DOI QR코드

DOI QR Code

Quasi-static responses of time-dependent sandwich plates with viscoelastic honeycomb cores

  • Nasrin Jafari (Department of Civil Engineering, Isfahan University of Technology) ;
  • Mojtaba Azhari (Department of Civil Engineering, Isfahan University of Technology)
  • 투고 : 2023.09.16
  • 심사 : 2023.12.06
  • 발행 : 2023.12.25

초록

This article addresses the quasi-static analysis of time-dependent honeycomb sandwich plates with various geometrical properties based on the bending analysis of elastic honeycomb sandwich plates employing a time function with three unknown coefficients. The novel point of the developed method is that the responses of viscoelastic honeycomb sandwich plates under static transversal loads are clearly formulated in the space and time domains with very low computational costs. The mechanical properties of the sandwich plates are supposed to be elastic for the faces and viscoelastic honeycomb cells for the core. The Boltzmann superposition integral with the constant bulk modulus is used for modeling the viscoelastic material. The shear effect is expressed using the first-order shear deformation theory. The displacement field is predicted by the product of a determinate geometrical function and an indeterminate time function. The simple HP cloud mesh-free method is utilized for discretizing the equations in the space domain. Two coefficients of the time function are extracted by answering the equilibrium equation at two asymptotic times. And the last coefficient is easily determined by solving the first-order linear equation. Numerical results are presented to consider the effects of geometrical properties on the displacement history of viscoelastic honeycomb sandwich plates.

키워드

참고문헌

  1. Abazid, M.A., Alotebi, M.S. and Sobhy, M. (2018), "A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation", Struct. Eng. Mech., 67(3), 219-232. https://doi.org/10.12989/sem.2018.67.3.219.
  2. Abdollahi, M., Saidi, A.R. and Bahaadini, R. (2021), "Aeroelastic analysis of symmetric and non-symmetric trapezoidal honeycomb sandwich plates with FG porous face sheets", Aerosp. Sci. Technol., 119, 107211. https://doi.org/10.1016/j.ast.2021.107211.
  3. Al-Fatlawii, A., Jarmai, K. and Kovacs, G. (2020), "Optimum design of honeycomb sandwich plates used for manufacturing of air cargo containers", Acad. J. Manuf. Eng., 18(2), 116-123.
  4. Alibeigloo, A. (2015), "Effect of viscoelastic interface on three-dimensional static and vibration behavior of laminated composite plate", Compos. Part B, 75, 17-28. https://doi.org/10.1016/j.compositesb.2015.01.025.
  5. Birman, V. and Bert, C.W. (2002), "On the choice of shear correction factor in sandwich structures", J. Sandw. Struct. Mater., 4, 83-95. https://doi.org/10.1177/1099636202004001180.
  6. Eskndari, M., Jafari, N. and Azhari, M. (2022), "Time-dependent three-dimensional quasi-static analysis of a viscoelastic solid by defining a time function", Mech. Time-Depend. Mater., 26, 829-856. https://doi.org/10.1007/s11043-021-09515-y.
  7. Gao, W., Liu, Y., Qin Z. and Chu, F. (2022), "Wave propagation in smart sandwich plates with functionally graded nanocomposite porous core and piezoelectric layers in multi-physics environment", Int. J. Appl. Mech., 14(5), 2250071. https://doi.org/10.1142/S1758825122500715.
  8. Han, J.W., Kim, J.S., Nguyen, S.N. and Cho, M. (2016), "Improved viscoelastic analysis of laminated composite and sandwich plates with an enhanced first-order shear deformation theory", J. Appl. Mech., 83, 1-10. https://doi.org/10.1115/1.4032013.
  9. Hatefniya, A., Jafari, N. and Azhari, M. (2023), "Effect of in-plane compression on the non-harmonic resonance of moderately thick time-dependent plates", Thin Wall. Struct., 184, 110516. https://doi.org/10.1016/j.tws.2022.110516.
  10. Jafari, N. (2022), "Time-dependent p-delta analysis of Timoshenko viscoelastic beams and Mindlin viscoelastic plates with different shapes", Struct., 43, 1436-1446. https://doi.org/10.1016/j.istruc.2022.07.072.
  11. Jafari, N. and Azhari, M. (2017), "Bending analysis of moderately thick arbitrarily shaped plates with point supports using simple Hp cloud method", Iran. J. Sci. Technol. Trans. Civil Eng., 41, 361-371. https://doi.org/10.1007/s40996-017-0079-7.
  12. Jafari, N. and Azhari, M. (2021), "Time-dependent static analysis of viscoelastic Mindlin plates by defining a time function", Mech. Time-Depend. Mater., 25, 231-248. https://doi.org/10.1007/s11043-019-09437-w.
  13. Jiang, F., Yang, S., Ding, C. and Qi, C. (2022), "Quasi-Static crushing behavior of novel circular double arrowed auxetic honeycombs: Experimental test and numerical simulation", Thin Wall. Struct., 177, 109434. https://doi.org/10.1016/j.tws.2022.109434.
  14. Kheirikhah, M.M., Khalili, S.M.R. and Malekzadeh Fard, K. (2012), "Analytical solution for bending analysis of soft-core composite sandwich plates using improved high-order theory", Struct. Eng. Mech., 44(1), 15-34. https://doi.org/10.12989/sem.2012.44.1.015.
  15. Li, H., Liu, Y., Zhang, H., Qin, Z., Wang, Z., Deng, Y., ... & Ha, S. K. (2023), "Amplitude-Dependent damping characteristics of all-composite sandwich plates with a foam-filled hexagon honeycomb core", Mech. Syst. Signal Pr., 186, 109845. https://doi.org/10.1016/j.ymssp.2022.109845.
  16. Liu, Y., Qin, Z. and Chu, F. (2023a), "Nonlinear vibrations of auxetic honeycomb thin plates based on the modified Gibson functions", Thin Wall. Struct., 193, 111259. https://doi.org/10.1016/j.tws.2023.111259.
  17. Liu, Y., Qin, Z. and Chu, F. (2023b), "A nonlinear repeated impact model of auxetic honeycomb structures considering geometric nonlinearity and tensile/compressive deformation", J. Appl. Mech., 90, 091008-2. https://doi.org/10.1115/1.4062592.
  18. Liu, Y., Zhu, R., Qin, Z. and Chu, F. (2022), "A comprehensive study on vibration characteristics of corrugated cylindrical shells with arbitrary boundary conditions", Eng. Struct., 269, 114818. https://doi.org/10.1016/j.engstruct.2022.114818.
  19. Mazaev, A.V. and Shitikova, M.V. (2021), "Numerical analysis of the stressed state of composite plates with a core layer made of tetrachiral honeycombs under static bending", Compos. Part C, 6, 100217. https://doi.org/10.1016/j.jcomc.2021.100217.
  20. Nguyen, N.V., Nguyen-Xuan, H., Nguyen, T.N., Kang, J. and Lee, J. (2021), "A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement", Compos. Struct., 259, 113213. https://doi.org/10.1016/j.compstruct.2020.113213.
  21. Qin, Q., Chen, S., Bai, C., Wang, Y. and Zhang, W. (2023), "On influence of face sheet distributions on low-velocity impact failure of metal honeycomb core sandwich plates", Thin Wall. Struct., 182, 110202. https://doi.org/10.1016/j.tws.2022.110202.
  22. Sadowski, T. and Bec, J. (2011), "Effective properties for sandwich plates with aluminum foil honeycomb core and polymer foam filling-static and dynamic response", Comput. Mater. Sci., 50(4), 1269-1275. https://doi.org/10.1016/j.commatsci.2010.04.014.
  23. Seera, N. (2011), "Viscoelastic damping of hexagonal honeycomb sandwich panels", Clemson University.
  24. Shan, N. (2011), "Analytical solutions using higher order composite laminate theory for honeycomb sandwich plates with viscoelastic frequency dependent damping", Clemson University.
  25. Shi, Z., Zhong, Y., Yi, Q. and Peng, X. (2021), "High efficiency analysis model for composite honeycomb sandwich plate by using variational asymptotic method", Thin Wall. Struct., 163, 107709. https://doi.org/10.1016/j.tws.2021.107709.
  26. Sy, N.N., Lee, J. and Cho, M. (2012), "Application of the Laplace transformation for the analysis of viscoelastic composite laminates based on equivalent single-layer theories", Int. J. Aeronaut. Space Sci., 13(4), 458-467. https://doi.org/10.5139/IJASS.2012.13.4.458.
  27. Taskin, V. and Demirhan, P.A. (2021), "Static analysis of simply supported porous sandwich plates", Struct. Eng. Mech., 77(4), 549-557. https://doi.org/10.12989/sem.2021.77.4.549.
  28. Triplett, M.H. and Schonberg, W.P. (1998), "Static and dynamic finite element analysis of honeycomb sandwich structures", Struct. Eng. Mech., 6(1), 95-113. https://doi.org/10.12989/sem.1998.6.1.095.
  29. Yang, F., Zhong, Y., Liu, R. and Cao, H. (2023), "Effective performance analysis of stiffened honeycomb sandwich panels using VAM-based equivalent model", Thin Wall. Struct., 185, 110590. https://doi.org/10.1016/j.tws.2023.110590.
  30. Zemanova A., Zemana J., Jandab T., et al. (2018), "Layer-wise numerical model for laminated glass plates with viscoelastic interlayer", Struct. Eng. Mech., 65(4), 369-380. https://doi.org/10.12989/sem.2018.65.4.369.
  31. Zenkour, A.M. (2003), "Exact mixed-classical solutions for the bending analysis of shear deformable rectangular plates", Appl. Math. Model., 27(7), 515-534. https://doi.org/10.1016/S0307-904X(03)00046-5.
  32. Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2011), "Bending response of a fiber-reinforced viscoelastic composite plate resting on elastic foundation", Arch. Appl. Mech., 81, 77-96. https://doi.org/10.1007/s00419-009-0396-9.
  33. Zhang, N.H. and Cheng, C.J. (1998), "Nonlinear mathematical model of viscoelastic thin plates with its applications", Comput. Meth. Appl. Mech. Eng., 16(5), 307-319. https://doi.org/10.1016/S0045-7825(98)00039-5.
  34. Zhu, X., Xiong, C., Yin, J., Zhou, H., Zou, Y., Fan, Z. and Deng, H. (2023), "Experimental study and modeling analysis of planar compression of composite corrugated, lattice and honeycomb sandwich plates", Compos. Struct., 308, 116690. https://doi.org/10.1016/j.compstruct.2023.116690.