참고문헌
- Abazid, M.A., Alotebi, M.S. and Sobhy, M. (2018), "A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation", Struct. Eng. Mech., 67(3), 219-232. https://doi.org/10.12989/sem.2018.67.3.219.
- Abdollahi, M., Saidi, A.R. and Bahaadini, R. (2021), "Aeroelastic analysis of symmetric and non-symmetric trapezoidal honeycomb sandwich plates with FG porous face sheets", Aerosp. Sci. Technol., 119, 107211. https://doi.org/10.1016/j.ast.2021.107211.
- Al-Fatlawii, A., Jarmai, K. and Kovacs, G. (2020), "Optimum design of honeycomb sandwich plates used for manufacturing of air cargo containers", Acad. J. Manuf. Eng., 18(2), 116-123.
- Alibeigloo, A. (2015), "Effect of viscoelastic interface on three-dimensional static and vibration behavior of laminated composite plate", Compos. Part B, 75, 17-28. https://doi.org/10.1016/j.compositesb.2015.01.025.
- Birman, V. and Bert, C.W. (2002), "On the choice of shear correction factor in sandwich structures", J. Sandw. Struct. Mater., 4, 83-95. https://doi.org/10.1177/1099636202004001180.
- Eskndari, M., Jafari, N. and Azhari, M. (2022), "Time-dependent three-dimensional quasi-static analysis of a viscoelastic solid by defining a time function", Mech. Time-Depend. Mater., 26, 829-856. https://doi.org/10.1007/s11043-021-09515-y.
- Gao, W., Liu, Y., Qin Z. and Chu, F. (2022), "Wave propagation in smart sandwich plates with functionally graded nanocomposite porous core and piezoelectric layers in multi-physics environment", Int. J. Appl. Mech., 14(5), 2250071. https://doi.org/10.1142/S1758825122500715.
- Han, J.W., Kim, J.S., Nguyen, S.N. and Cho, M. (2016), "Improved viscoelastic analysis of laminated composite and sandwich plates with an enhanced first-order shear deformation theory", J. Appl. Mech., 83, 1-10. https://doi.org/10.1115/1.4032013.
- Hatefniya, A., Jafari, N. and Azhari, M. (2023), "Effect of in-plane compression on the non-harmonic resonance of moderately thick time-dependent plates", Thin Wall. Struct., 184, 110516. https://doi.org/10.1016/j.tws.2022.110516.
- Jafari, N. (2022), "Time-dependent p-delta analysis of Timoshenko viscoelastic beams and Mindlin viscoelastic plates with different shapes", Struct., 43, 1436-1446. https://doi.org/10.1016/j.istruc.2022.07.072.
- Jafari, N. and Azhari, M. (2017), "Bending analysis of moderately thick arbitrarily shaped plates with point supports using simple Hp cloud method", Iran. J. Sci. Technol. Trans. Civil Eng., 41, 361-371. https://doi.org/10.1007/s40996-017-0079-7.
- Jafari, N. and Azhari, M. (2021), "Time-dependent static analysis of viscoelastic Mindlin plates by defining a time function", Mech. Time-Depend. Mater., 25, 231-248. https://doi.org/10.1007/s11043-019-09437-w.
- Jiang, F., Yang, S., Ding, C. and Qi, C. (2022), "Quasi-Static crushing behavior of novel circular double arrowed auxetic honeycombs: Experimental test and numerical simulation", Thin Wall. Struct., 177, 109434. https://doi.org/10.1016/j.tws.2022.109434.
- Kheirikhah, M.M., Khalili, S.M.R. and Malekzadeh Fard, K. (2012), "Analytical solution for bending analysis of soft-core composite sandwich plates using improved high-order theory", Struct. Eng. Mech., 44(1), 15-34. https://doi.org/10.12989/sem.2012.44.1.015.
- Li, H., Liu, Y., Zhang, H., Qin, Z., Wang, Z., Deng, Y., ... & Ha, S. K. (2023), "Amplitude-Dependent damping characteristics of all-composite sandwich plates with a foam-filled hexagon honeycomb core", Mech. Syst. Signal Pr., 186, 109845. https://doi.org/10.1016/j.ymssp.2022.109845.
- Liu, Y., Qin, Z. and Chu, F. (2023a), "Nonlinear vibrations of auxetic honeycomb thin plates based on the modified Gibson functions", Thin Wall. Struct., 193, 111259. https://doi.org/10.1016/j.tws.2023.111259.
- Liu, Y., Qin, Z. and Chu, F. (2023b), "A nonlinear repeated impact model of auxetic honeycomb structures considering geometric nonlinearity and tensile/compressive deformation", J. Appl. Mech., 90, 091008-2. https://doi.org/10.1115/1.4062592.
- Liu, Y., Zhu, R., Qin, Z. and Chu, F. (2022), "A comprehensive study on vibration characteristics of corrugated cylindrical shells with arbitrary boundary conditions", Eng. Struct., 269, 114818. https://doi.org/10.1016/j.engstruct.2022.114818.
- Mazaev, A.V. and Shitikova, M.V. (2021), "Numerical analysis of the stressed state of composite plates with a core layer made of tetrachiral honeycombs under static bending", Compos. Part C, 6, 100217. https://doi.org/10.1016/j.jcomc.2021.100217.
- Nguyen, N.V., Nguyen-Xuan, H., Nguyen, T.N., Kang, J. and Lee, J. (2021), "A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement", Compos. Struct., 259, 113213. https://doi.org/10.1016/j.compstruct.2020.113213.
- Qin, Q., Chen, S., Bai, C., Wang, Y. and Zhang, W. (2023), "On influence of face sheet distributions on low-velocity impact failure of metal honeycomb core sandwich plates", Thin Wall. Struct., 182, 110202. https://doi.org/10.1016/j.tws.2022.110202.
- Sadowski, T. and Bec, J. (2011), "Effective properties for sandwich plates with aluminum foil honeycomb core and polymer foam filling-static and dynamic response", Comput. Mater. Sci., 50(4), 1269-1275. https://doi.org/10.1016/j.commatsci.2010.04.014.
- Seera, N. (2011), "Viscoelastic damping of hexagonal honeycomb sandwich panels", Clemson University.
- Shan, N. (2011), "Analytical solutions using higher order composite laminate theory for honeycomb sandwich plates with viscoelastic frequency dependent damping", Clemson University.
- Shi, Z., Zhong, Y., Yi, Q. and Peng, X. (2021), "High efficiency analysis model for composite honeycomb sandwich plate by using variational asymptotic method", Thin Wall. Struct., 163, 107709. https://doi.org/10.1016/j.tws.2021.107709.
- Sy, N.N., Lee, J. and Cho, M. (2012), "Application of the Laplace transformation for the analysis of viscoelastic composite laminates based on equivalent single-layer theories", Int. J. Aeronaut. Space Sci., 13(4), 458-467. https://doi.org/10.5139/IJASS.2012.13.4.458.
- Taskin, V. and Demirhan, P.A. (2021), "Static analysis of simply supported porous sandwich plates", Struct. Eng. Mech., 77(4), 549-557. https://doi.org/10.12989/sem.2021.77.4.549.
- Triplett, M.H. and Schonberg, W.P. (1998), "Static and dynamic finite element analysis of honeycomb sandwich structures", Struct. Eng. Mech., 6(1), 95-113. https://doi.org/10.12989/sem.1998.6.1.095.
- Yang, F., Zhong, Y., Liu, R. and Cao, H. (2023), "Effective performance analysis of stiffened honeycomb sandwich panels using VAM-based equivalent model", Thin Wall. Struct., 185, 110590. https://doi.org/10.1016/j.tws.2023.110590.
- Zemanova A., Zemana J., Jandab T., et al. (2018), "Layer-wise numerical model for laminated glass plates with viscoelastic interlayer", Struct. Eng. Mech., 65(4), 369-380. https://doi.org/10.12989/sem.2018.65.4.369.
- Zenkour, A.M. (2003), "Exact mixed-classical solutions for the bending analysis of shear deformable rectangular plates", Appl. Math. Model., 27(7), 515-534. https://doi.org/10.1016/S0307-904X(03)00046-5.
- Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2011), "Bending response of a fiber-reinforced viscoelastic composite plate resting on elastic foundation", Arch. Appl. Mech., 81, 77-96. https://doi.org/10.1007/s00419-009-0396-9.
- Zhang, N.H. and Cheng, C.J. (1998), "Nonlinear mathematical model of viscoelastic thin plates with its applications", Comput. Meth. Appl. Mech. Eng., 16(5), 307-319. https://doi.org/10.1016/S0045-7825(98)00039-5.
- Zhu, X., Xiong, C., Yin, J., Zhou, H., Zou, Y., Fan, Z. and Deng, H. (2023), "Experimental study and modeling analysis of planar compression of composite corrugated, lattice and honeycomb sandwich plates", Compos. Struct., 308, 116690. https://doi.org/10.1016/j.compstruct.2023.116690.