DOI QR코드

DOI QR Code

Finite element analysis of the femur fracture for a different total hip prosthesis (Charnley, Osteal, and Thompson)

  • Mohammed El Sallah Zagane (Department of Mechanical Engineering, University of Ibn Khaldoun Tiaret) ;
  • Moulgada Abdelmadjid (Department of Mechanical Engineering, University of Ibn Khaldoun Tiaret) ;
  • Murat Yaylaci (Biomedical Engineering MSc Program, Recep Tayyip Erdogan University) ;
  • Sahli Abderahmen (Department of Mechanical Engineering, LMPM Laboratory, University of Djillali Liabes Sidi Bel Abbes) ;
  • Ecren Uzun Yaylaci (Faculty of Engineering and Architecture, Recep Tayyip Erdogan University)
  • Received : 2022.10.04
  • Accepted : 2023.12.04
  • Published : 2023.12.25

Abstract

Total hip replacement is a crucial intervention for patients with fractured hips who face challenges in natural recovery. The design of durable prostheses requires a comprehensive understanding of the natural processes occurring in bone. This article focuses on static loading analysis, specifically during stumbling activity, aiming to enhance the longevity of prosthetic implants. Three distinct implants, Charnley, Osteal, and Thompson, were selected for a detailed study to determine the most appropriate model. The results revealed critical insights into the distribution of Von Mises stresses on the components of femoral arthroplasty, including the cement, implant, and cortical bone. Furthermore, the examination of shear stress within the cement emerged as a pivotal aspect for all three implants, playing a crucial role in evaluating the performance and durability of hip prostheses. The conclusions drawn from this study strongly suggest that the Thompson model stands out as the most suitable choice for hip joint implants.

Keywords

References

  1. ABAQUS/Standard Version 6.13-1 (2013), Analysis User's Manual, Dassault Systemes Simulia Corporation, Providence, RI, Hibbitt, Karlsson, Sorensen, Abaqus 6.13.1 Manual.
  2. Abharian, S., Sarfarazi, V., Marji, M.F., Rasekh, H. and Sadrekarimi, A. (2023), "Effect of geogrid reinforcement on tensile failure of high-strength self-compacted concrete", Mag. Concrete Res., 75(8), 379-401. https://doi.org/10.1680/jmacr.21.00284.
  3. Bergmann, G. (2001), "HIP98", Free University, BerLin.
  4. Bergmann, G., Graichen, F. and Rohlmann, A. (2004), "Hip joint contact forces during stumbling", Langenbecks Arch. Surg., 389(1), 53-59. https://doi.org/10.1007/s00423-003-0434-y.
  5. Beswick, A. and Blom, A.W. (2011), "Bone graft substitutes in hip revision surgery: a comprehensive overview", Injury, 42(2), 40-46. https://doi.org/10.1016/j.injury.2011.06.009.
  6. Bouziane, M.M., Benbarek, S., Tabeti, S.M.H., Bouiadjra, B., Abbes, B., Serier, B. and Achour, T. (2014), "Finite element analysis of the mechanical behaviour of the different cemented hip femoral prostheses", Key Eng. Mater., 577, 349-352. https://doi.org/10.4028/www.scientific.net/KEM.577-578.349.
  7. Bronzino, J.D. (1999), Biomedical Engineering Handbook, 2, CRC Press.
  8. Chethan, K.N., Shyamasunder Bhat, N., Zuber, M. and Satish Shenoy, B. (2019a), "Finite element analysis of different hip implant designs along with femur under static loading conditions", Biomed. Phys. Eng., 9(5), 507-521. https://doi.org/10.31661/jbpe.v0i0.1210.
  9. Chethan, K.N., Zuber, M., Shenoy, S. and Kini, C.R. (2019b), "Static structural analysis of different stem designs used in total hip arthroplasty using finite element method", Heliyon, 5(6), e01767. https://doi.org/10.1016/j.heliyon.2019.e01767.
  10. DarAssi, M. (2021), "Convective stability of CO2 sequestration in a porous medium", Nonlin. Dyn. Syst. Theory, 21(2), 179-192.
  11. DarAssi, M. and Hadji, L. (2014), "Analysis of the interplay between sedimentation and thermophoresis in the presence of convection in colloidal suspensions", Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, 46247, V01DT32A001.
  12. Darwish, S.M. and Al-Samhan, A.M. (2009), "Optimization of artificial hip joint parameters", Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prufung, Eigenschaften und Anwendungen technischer Werkstoffe, 40(3), 218-223. https://doi.org/10.1002/mawe.200900430.
  13. Djebbar, N., Serier, B. and Bouiadjra, B.B. (2015), "Finite element analysis in static and dynamic behaviors of dental prosthesis", Struct. Eng. Mech., 55(1), 65-78. https://doi.org/10.12989/sem.2015.55.1.065.
  14. El'Sheikh, H.F., MacDonald, B.J. and Hashmi, M.S.J. (2003), "Finite element simulation of the hip joint during stumbling: A comparison between static and dynamic loading", J. Mater. Proc. Technol., 143, 249-255. https://doi.org/10.1016/S0924-0136(03)00352-2.
  15. Fu, J., Haeri, H., Sarfarazi, V., Babanouri, N., Rezaei, A., Manesh, M.O., Bahrami, R. and Marji, M.F. (2023), "Effects of axial loading width and immediate roof thickness on the failure mechanism of a notched roof in room and pillar mining: experimental test and numerical simulation", Rock Mech. Rock Eng., 56, 719-745. https://doi.org/10.1007/s00603-022-03082-5.
  16. Gao, L., Wang, F., Yang, P. and Jin, Z. (2009), "Effect of 3D physiological loading and motion on elastohydrodynamic lubrication of metal-on-metal total hip replacements", Med. Eng. Phys., 31(6), 720-729. https://doi.org/10.1016/j.medengphy.2009.02.002.
  17. Gravius, S., Wirtz, D.C., Siebert, C.H., Mueller-Rath, R., Maus, U. and Mumme, T. (2008), "In vitro interface and cement mantle analysis of different femur stem designs", J. Biomech., 41(9), 2021-2028. https://doi.org/10.1016/j.jbiomech.2008.03.041.
  18. Guvercin, Y. and Yaylaci, M. (2023), "Biomechanical investigation of the effects of various treatment options on the talus in supination external rotation type 4 ankle injuries with ruptured deltoid ligament: Finite element analysis", Sakarya Med. J., 13(1), 62-69. https://doi.org/10.31832/smj.1220996.
  19. Guvercin, Y., Abdioglu, A.A., Dizdar, A., Uzun Yaylaci, E. and Yaylaci, M. (2022a), "Suture button fixation method used in the treatment of syndesmosis injury: A biomechanical analysis of the effect of the placement of the button on the distal tibiofibular joint in the mid-stance phase with finite elements method", Injury, 53(7), 2437-2445. https://doi.org/10.1016/j.injury.2022.05.037.
  20. Guvercin, Y., Yaylaci, M., Olmez, H., Uzun Yaylaci, E., Ozdemir, M.E. and Dizdar, A. (2022b), "Finite element analysis of the mechanical behavior of the different angle hip femoral stem", Biomed. Mater. Eng., 6(1), 29-46. https://doi.org/10.12989/bme.2022.6.1.029.
  21. Guvercin, Y., Yaylaci, M., Olmez, H., Uzun Yaylaci, E., Ozdemir, M.E. and Dizdar, A. (2022c), "Finite element analysis of the mechanical behavior of the different angle hip femoral stem", Biomater. Biomech. Bioeng., 6(1), 29-46. https://doi.org/10.12989/bme.2022.6.1.029.
  22. Hadji, L. and DarAssi, M. (2014), "Influence of sedimentation on the threshold for Soret-driven convection in colloidal suspensions", Phys. Rev. E, 89(1), 013014. https://doi.org/10.1103/PhysRevE.89.013014.
  23. Harsha, A.P. and Joyce, T.J. (2013), "Comparative wear tests of ultra-high molecular weight polyethylene and cross-linked polyethylene", J. Eng. Med., 227(5), 600-608. https://doi.org/10.1177/0954411913479528.
  24. Kayabasi, O. and Erzincanli, F. (2006), "Finite element modelling and analysis of a new cemented hip prosthesis", Adv. Eng. Softw., 37(7), 477-483. https://doi.org/10.1016/j.advengsoft.2005.09.003.
  25. Monif, M.M. (2012), "Finite element study on the predicted equivalent stresses in the artificial hip joint", J. Biomed. Sci. Eng., 5(2), 43-51. https://doi.org/10.4236/jbise.2012.52007.
  26. Moulgada, A., Zagane, M.E.S., Yaylaci, M., Djafar, A.K., Abderahmane, S., Ozturk, S. and Uzun Yaylaci, E. (2023), "Comparative study by the finite element method of three activities of a wearer of total hip prosthesis during the postoperative period", Struct. Eng. Mech., 87(6), 575-583. https://doi.org/10.12989/sem.2023.87.6.575.
  27. Nakhli, Z., Hatira, F.B., Pithioux, M., Chabrand, P. and Saanouni, K. (2019), "Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law", Struct. Eng. Mech., 72(2), 191-201. https://doi.org/10.12989/sem.2019.72.2.191.
  28. Nisanci, G.N., Guvercin, Y., Ates, S.M., Olmez, H., Uzun Yaylaci, E. and Yaylaci, M. (2020), "Investigation of the effect of different prosthesis designs and numbers on stress, strain and deformation distribution", Int. J. Eng. Appl. Sci., 12(4), 138-152. https://doi.org/10.24107/ijeas.816227.
  29. Noori, M., Khanlari, G., Rafiei, B., Sarfarazi, V. and Zaheri, M. (2022), "Correction to: Estimation of brittleness indexes from petrographic characteristics of different sandstone types (Cenozoic and mesozoic sandstones), Markazi Province, Iran", Rock Mech. Rock Eng., 55(4), 1955-1995. https://doi.org/10.1007/s00603-022-02934-4.
  30. Shankar, S. and Manikandan, M. (2014), "Mankandan dynamic contact analysis of total hip prosthesis during stumbling cycle", J. Mech. Med. Biol., 14(3), 1450041. https://doi.org/10.1142/S0219519414500419.
  31. Shankar, S., Manikandan, M. and Kalayarasan, M. (2014), "Dynamic contact analysis of total hip prosthesis during normal active walking cycle", Int. J. Biomed. Eng. Tech., 15(2), 114-127. https://doi.org/10.1504/IJBET.2014.062742.
  32. Sun, T.C., DarAssi, M., Bilal, M. and Khan, M.A. (2022), "The study of Darcy-Forchheimer hybrid nanofluid flow with the thermal slip and dissipation effect using parametric continuation approach over a rotating disk", Wave. Random Complex Media, 1-14. https://doi.org/10.1080/17455030.2022.2072537.
  33. Terzi, M., Guvercin, Y., Ates, S.M., Sekban, D.M. and Yaylaci, M. (2020). "Effect of different abutment materials on stress distribution in peripheral bone and dental implant system", Sigma J. Eng. Nat. Sci., 38(3), 1515-1527.
  34. Uzun Yaylaci, E., Oner, E., Yaylaci, M., Ozdemir, M.E., Abushattal, A. and Birinci, A. (2022). "Application of artificial neural networks in the analysis of the continuous contact problem", Struct. Eng. Mech., 84(1), 35-48. https://doi.org/10.12989/sem.2022.84.1.035.
  35. Yaylaci, M., Sengul Sabano, B., Ozdemir, M.E. and Birinci, A. (2022), "Solving the contact problem of functionally graded layers resting on a homogeneous half-plane and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401.
  36. Yaylaci, M., Yayli, M., Uzun Yaylaci, E., Olmez, H. and Birinci, A., (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
  37. Zagane, M.E.S, Ismail, B., Ali, B., Abderahmen, S., Bel Abbes, B. B. and Serier, B. (2017), "Numerical simulation of the femur fracture with and without prosthesis under static loading using extended finite element method (X-FEM)", J. Mech. Eng., 14(1), 109-124.
  38. Zagane, M.E.S, Moulgada, A., Yaylaci, M., Abderahmen, S., Ozdemir, M. and Uzun Yaylaci, E. (2023), "Numerical simulation of the total hip prosthesis under static and dynamic loading (for three activities)", Struct. Eng. Mech., 86(5), 635-645. https://doi.org/10.12989/sem.2023.86.5.635.