Acknowledgement
The Authors extend their appreciation to the Deputyship for Research& Innovation, Ministry of Education in Saudi Arabia for funding this research through the project number: ISP23-69.
References
- Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705. https://doi.org/10.12989/sem.2022.81.6.705.
- Belalia, S.A. (2019a), "A new analysis of nonlinear free vibration behavior of bi-functionally graded sandwich plates using the p-version of the finite element method", Mech. Adv. Mater. Struct., 26(8), 727-740. https://doi.org/10.1080/15376494.2017.1410912.
- Belalia, S.A. (2019b), "A curved hierarchical finite element method for the nonlinear vibration analysis of functionally graded sandwich elliptic plates", Mech. Adv. Mater. Struct., 26(13), 1115-1129. https://doi.org/10.1080/15376494.2018.1430277.
- Belalia, S.A. (2019c), "Investigation of the mechanical properties on the large amplitude free vibrations of the functionally graded material sandwich plates", J. Sandw. Struct. Mater., 21(3), 895-916. https://doi.org/10.1177/1099636217701299.
- Bendahmane, A., Hamza-Cherif, S.M. and Ouissi, M.N. (2021), "Free vibration analysis of Variable Stiffness Composite Laminate (VSCL) plates coupled with fluid", Mech. Adv. Mater. Struct., 28(2), 167-181. https://doi.org/10.1080/15376494.2018.1553257.
- Burlayenko, V.N. and Sadowski, T. (2020), "Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements", Meccanica, 55(4), 815-832. https://doi.org/10.1007/s11012-019-01001-7.
- Daikh, A.A. and Zenkour, A.M. (2019a), "Effect of porosity on the bending analysis of various functionally graded sandwich plates", Mater. Res. Expr., 6(6), 065703. https://doi.org/10.1088/2053-1591/ab0971.
- Daikh, A.A. and Zenkour, A.M. (2019b), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Expr., 6(11), 115707. https://doi.org/10.1088/2053-1591/ab48a9.
- Dat, P.T. and Luat, D.T. (2016), "Free vibration of functionally graded sandwich plates with stiffeners based on the third-order shear deformation theory", Vietnam J. Mech., 38(2), 103-122. https://doi.org/10.15625/0866-7136/38/2/6730.
- Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2021), "A review of the analysis of sandwich FGM structures", Compos. Struct., 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
- Hadji, L., Fallah, A. and Aghdam, M.M. (2022), "Influence of the distribution pattern of porosity on the free vibration of functionally graded plates", Struct. Eng. Mech., 82(2), 151. https://doi.org/10.12989/sem.2022.82.2.151.
- Heshmati, M. and Jalali, S.K. (2019), "Effect of radially graded porosity on the free vibration behavior of circular and annular sandwich plates", Eur. J. Mech., A/Solid., 74, 417-430. https://doi.org/10.1016/j.euromechsol.2018.12.009.
- Irfan, S. and Siddiqui, F. (2019), "A review of recent advancements in finite element formulation for sandwich plates", Chin. J. Aeronaut., 32(4), 785-798. https://doi.org/10.1016/j.cja.2018.11.011.
- Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vib., 31(3), 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2.
- Malik, M. and Bert, C.W. (1998), "Three-dimensional elasticity solutions for free vibrations of rectangular plates by the differential quadrature method", Int. J. Solid. Struct., 35(3-4), 299-318. https://doi.org/10.1016/S0020-7683(97)00073-5.
- Quan, T.Q. and Duc, N.D. (2022), "Analytical solutions for nonlinear vibration of porous functionally graded sandwich plate subjected to blast loading", Thin Wall. Struct., 170, 108606. https://doi.org/10.1016/j.tws.2021.108606.
- Sah, S.K. and Ghosh, A. (2022), "Influence of porosity distribution on free vibration and buckling analysis of multidirectional functionally graded sandwich plates", Compos. Struct., 279, 114795. https://doi.org/10.1016/j.compstruct.2021.114795.
- Swaminathan, K. and Sangeetha, D.M. (2017), "Thermal analysis of FGM plates-A critical review of various modeling techniques and solution methods", Compos. Struct., 160, 43-60. https://doi.org/10.1016/j.compstruct.2016.10.047.
- Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M. and Carrera, E. (2015), "Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review", Compos. Struct., 120, 10-31. https://doi.org/10.1016/j.compstruct.2014.09.070.
- Szilard, R. (2004), Theories and Applications of Plate Analysis, JohnWiley & Sons Inc., Hoboken, New Jersey,
- Tran, T.T., Pham, Q.H. and Nguyen-Thoi, T. (2021), "Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method", Defence Technol., 17(3), 971-986. https://doi.org/10.1016/j.dt.2020.06.001.
- Van Vinh, P. (2022), "Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory", Defence Technol., 18(3), 490-508. https://doi.org/10.1016/j.dt.2021.03.006.
- Wang, Y. (2023a), "Adaptive mesh refinement for finite element analysis of elastic buckling disturbance of circularly curved beams due to multiple micro-cracks damage", Eng. Comput., 40(1), 191-209. https://doi.org/10.1108/EC-01-2022-0016.
- Wang, Y. (2023b), "Mesh refinement of finite element method for free vibration analysis of variable geometrical rotating cylindrical shells", Eng. Comput., 40(1), 210-228. https://doi.org/10.1108/EC-02-2022-0082.
- Wang, Y. and Wang, J. (2022), "An Hp-version adaptive finite element algorithm for eigensolutions of moderately thick circular cylindrical shells via error homogenisation and higher-order interpolation", Eng. Comput., 39(5), 1874-1901. https://doi.org/10.1108/EC-07-2021-0430.
- Wang, Y., Hu, J., Kennedy, D., Wang, J. and Wu, J. (2022), "Adaptive mesh refinement for finite element analysis of the free vibration disturbance of cylindrical shells due to circumferential micro-crack damage", Eng. Comput., 39(9), 3271-3295. https://doi.org/10.1108/EC-09-2021-0555.
- Yaylaci, M., Adiyaman, G., OEner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325. https://doi.org/10.12989/sem.2020.76.3.325.
- Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solid. Struct., 42(18-19). 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.
- Zhang, J., Yang, W., Chen, J. and Xu, R. (2021), "Direct evaluation of the stress intensity factors for the single and multiple crack problems using the P-version finite element method and contour integral method", Appl. Sci., 11(17), 8111. https://doi.org/10.3390/app11178111.
- Zhang, Y., Jin, G., Chen, M., Ye, T., Yang, C. and Yin, Y. (2020), "Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core", Compos. Struct., 244, 112298. https://doi.org/10.1016/j.compstruct.2020.112298.