DOI QR코드

DOI QR Code

Numerical investigation and optimization of the solar chimney performances for natural ventilation using RSM

  • Mohamed Walid Azizi (Department of Mechanical Engineering and Electomechanical, Institute of Sciences and Technology, University Center of Mila) ;
  • Moumtez Bensouici (Department of Mechanical Engineering and Electomechanical, Institute of Sciences and Technology, University Center of Mila) ;
  • Fatima Zohra Bensouici (Faculty of Pharmaceutical Process Engineering, University of Constantine 3)
  • 투고 : 2022.07.31
  • 심사 : 2023.11.23
  • 발행 : 2023.12.25

초록

In the present study, the finite volume method is applied for the thermal performance prediction of the natural ventilation system using vertical solar chimney whereas, design parameters are optimized through the response surface methodology (RSM). The computational simulations are performed for various parameters of the solar chimney such as absorber temperature (40≤Tabs≤70℃), inlet temperature (20≤T0≤30℃), inlet height of (0.1≤h≤0.2 m) and chimney width (0.1≤d≤0.2 m). Analysis of variance (ANOVA) was carried out to identify the design parameters that influence the average Nusselt number (Nu) and mass flow rate (ṁ). Then, quadratic polynomial regression models were developed to predict of all the response parameters. Consequently, numerical and graphical optimizations were performed to achieve multi-objective optimization for the desired criteria. According to the desirability function approach, it can be seen that the optimum objective functions are Nu=25.67 and ṁ=24.68 kg/h·m, corresponding to design parameters h=0.18 m, d=0.2 m, Tabs=46.81℃ and T0=20℃. The optimal ventilation flow rate is enhanced by about 96.65% compared to the minimum ventilation rate, while solar energy consumption is reduced by 49.54% compared to the maximum ventilation rate.

키워드

과제정보

The authors thank the Algerian Ministry of Higher Education and Scientific Research (MESRS) for financial support for PRFU Research Project coded: A11N01CU430120220001 (University Center of Mila, Algeria). The authors also take this opportunity to sincerely respect the technical editor and the reviewers for their remarks, comments and suggestions.

참고문헌

  1. Abdeen, A., Serageldin, A.A., Ibrahim, M.G.E., El-Zafarany, A., Ookawara, S. and Murata, R. (2019), "Solar chimney optimization for enhancing thermal comfort in Egypt: An experimental and numerical study", Solar Energy, 180, 524-536. https://doi.org/10.1016/j.solener.2019.01.063.
  2. Al-Kayiem, H.H., Sreejaya, K.V. and Chikere, A.O. (2018), "Experimental and numerical analysis of the influence of inlet configuration on the performance of a roof top solar chimney", Energy Build., 159, 89-98. https://doi.org/10.1016/j.enbuild.2017.10.063.
  3. Amori, K.E. and Mohammed, S.W. (2012), "Experimental and numerical studies of solar chimney for natural ventilation in Iraq", Energy Build., 47, 450-457. https://doi.org/10.1016/j.enbuild.2011.12.014.
  4. Azizi, M.W., Keblouti, O., Boulanouar, L. and Yallese, M.A. (2020), "Design optimization in hard turning of E19 alloy steel by analysing surface roughness, tool vibration and productivity", Struct. Eng. Mech., 73(5), 501-513. https://doi.org/10.12989/sem.2020.73.5.501.
  5. Bacharoudis, E., Vrachopoulos, M.G., Koukou, M.K., Margaris, D., Filios, A.E. and Mavrommatis S.A. (2007), "Study of the natural convection phenomena inside a wall solar chimney with one wall adiabatic and one wall under a heat flux", Appl. Therm. Eng., 27, 2266-2275. https://doi.org/10.1016/j.applthermaleng.2007.01.021.
  6. Barkett, B.A.C., Ramirez Camacho, R.G., Tiago Filho, G.L. and da Silva, E.R. (2017), "Optimization of a draft tube using statistical techniques-doe and 2D computational fluid dynamic analysis", J. Appl. Fluid. Mech., 14(6), 1617-1633. https://doi.org/10.47176/jafm.14.06.32314.
  7. Bassiouny, R. and Korah, N.S.A. (2009), "Effect of solar chimney inclination angle on space flow pattern and ventilation rate", Energy Build., 41, 190-196. https://doi.org/10.1016/j.enbuild.2008.08.009.
  8. Bensouici, M. and Bensouici, F.Z. (2017), "Entropy generation and optimization of laminar forced convection air cooling in a horizontal channel containing heated sources", J. Appl. Fluid. Mech, 10(1), 819-831. https://doi.org/10.18869/acadpub.jafm.73.240.26847.
  9. Bensouici, M., Azizi, M.W. and Bensouici, F.Z. (2021), "multi-objective optimization of mixed convection air cooling in an inclined channel with discrete heat sources", Struct. Eng. Mech., 79, 51-66. https://doi.org/10.12989/sem.2021.79.1.051.
  10. Bouziane, A., Boulanouar, L., Azizi, M.W. and Keblouti, O. (2018), "Analysis of cutting forces and roughness during hard turning of bearing steel", Struct. Eng. Mech., 66(3), 285-294. https://doi.org/doi: 10.12989/sem.2018.66.3.285.
  11. Burek, S.A.M. and Habeb, A. (2007), "Air flow and thermal efficiency characteristics in solar chimneys and Trombe Walls", Energy Build., 39, 128-135. https://doi.org/10.1016/j.enbuild.2006.04.015.
  12. Cengel, Y.A. (2008), Introduction to Thermodynamics and Heat Transfer, Second Edition: Property Tables and Charts (SI units), The McGraw-Hill Companies.
  13. Corcione, M., Fontana, L. and Quintino, A. (2023), "First analysis of a novel design of a solar chimney with absorber elements distributed in the air channel", Appl. Therm. Eng., 230, 120539. https://doi.org/10.1016/j.applthermaleng.2023.120539.
  14. Da Silva, A.K. and Gosselin, L. (2005), "Optimal geometry of L and C-shaped channels for maximum heat transfer rate in natural convection", Int. J. Heat Mass Transf., 48, 609-620. https://doi.org/10.1016/j.ijheatmasstransfer.2004.08.028.
  15. Derringer, G. and Suich, R. (1980), "Simultaneous optimization of several response variables", J. Qualit. Technol., 12, 214-219. https://doi.org/10.1080/00224065.
  16. Dhahri, M. and Aouinet, H. (2020), "CFD investigation of temperature distribution, air flow pattern and thermal comfort in natural ventilation of building using solar chimney", World J. Eng., 17(1), 78-86. https://doi.org/10.1108/WJE-09-2019-0261.
  17. Gan, G. (2010), "Impact of computational domain on the prediction of buoyancy-driven ventilation cooling", Build. Environ., 45, 1173-1183. https://doi.org/10.1016/j.buildenv.2011.04.014.
  18. Ghalamchi, M., Kasaeian, A., Ghalamchi, M. and Mirzahosseini, A.H. (2016), "An experimental study on the thermal performance of a solar chimney with different dimensional parameters", Renew. Energy, 91, 477-483. https://doi.org/10.1016/j.renene.2016.01.091.
  19. Harrington, Jr. E.C. (1965), "The desirability function", Indus. Qualit. Control, 21, 494-498.
  20. He, G. and Lv, D. (2022), "Distributed heat absorption in a solar chimney to enhance ventilation", Solar Energy, 238, 315-326. https://doi.org/10.1016/j.solener.2022.04.047.
  21. Hosien, M.A. and Selim, S.M. (2017), "Effects of the geometrical and operational parameters and alternative outer cover materials on the performance of solar chimney used for natural ventilation", Energy Build., 138, 355-367. https://doi.org/10.1016/j.enbuild.2016.12.041.
  22. Imran, A.A., Jalil, J.M. and Ahmed, S.T. (2015), "Induced flow for ventilation and cooling by a solar chimney", Renew. Energy, 78, 236-244. http://doi.org/10.1016/j.renene.2015.01.019.
  23. Jafari, S. and Kalantar, V. (2022), "Numerical simulation of natural ventilation with passive cooling by diagonal solar chimneys and windcatcher and water spray system in a hot and dry climate", Energy Build., 256, 111714. https://doi.org/10.1016/j.enbuild.2021.111714.
  24. Kalantar, V. (2012), "Numerical simulation of airflow in a solar chimney for cooling buildings in the city of Yazd", J. Renew. Sustain. Energy, 4(6), 063147. https://doi.org/10.1063/1.4771883.
  25. Kalantar, V. and Khayyaminejad, A. (2022), "Numerical simulation of a combination of a new solar ventilator and geothermal heat exchanger for natural ventilation and space cooling", Int. J. Energy Environ. Eng., 13, 785-804. https://doi.org/10.1007/s40095-021-00463-4.
  26. Khanal, R. and Lei, C. (2011), "Numerical investigation of the ventilation performance of a solar chimney", ANZIAM J., 52, C 899-C913. https://doi.org/10.21914/anziamj.v52i0.3947.
  27. Khanal, R. and Lei, C. (2012), "Flow reversal effects on buoyancy induced airflow in a solar chimney", Solar Energy, 86, 2783-2794. http://doi.org/10.1016/j.solener.2012.06.015.
  28. Mathur, J. and Mathur, S. (2006), "Summer- performance of inclined roof solar chimney for natural ventilation", Energy Build., 38, 1156-1163. https://doi.org/10.1016/j.enbuild.2006.01.006.
  29. Mokheimer, E.M.A., Shakeel, M.R. and Al-Sadah, J. (2017), "A novel design of solar chimney for cooling load reduction and other applications in buildings", Energy Build., 153, 219-230. https://doi.org/10.1016/j.enbuild.2017.08.011.
  30. Mondal, B., Srivastava, V.C. and Mall, I.D. (2012), "Electrochemical treatment of dye-bath effluent by stainless steel electrodes: Multiple response optimization and residue analysis", J. Environ. Sci. Hlth. Part A, 47, 2040-2051. https://doi.org/10.1080/10934529.2012.695675.
  31. Montgomery, D.C. (2001), Design and Analysis of Experiments, John Wiley & Sons, New York.
  32. Namazizadeh, M., Talebian Gevari, M., Mojaddam, M. and Vajdi, M. (2020), "Optimization of the splitter blade configuration and geometry of a centrifugal pump impeller using design of experiment", J. Appl. Fluid. Mech., 13(1), 89-101. https://doi.org/10.29252/JAFM.13.01.29856.
  33. Rabani, M., Kalantar, V., Dehghan, A.A. and Faghih, A.K. (2015), "Empirical investigation of the cooling performance of a new designed Trombe wall in combination with solar chimney and water spraying system", Energy Build, 102, 45-57. https://doi.org/10.1016/j.enbuild.2015.05.010.
  34. Ren, X.H., Liu, R.Z., Wang, Y.H., Wang, L. and Zhao, F.Y. (2019), "Thermal driven natural convective flows inside the solar chimney flush-mounted with discrete heating sources: Reversal and cooperative flow dynamics", Renew. Energy, 138, 354-367. https://doi.org/10.1016/j.renene.2019.01.090.
  35. Saleh, M., Jahromi, B., Kalantar, V., Samimi, H. and Shoeibi, S. (2023), "Performance analysis of a new solar air ventilator with phase change material: numerical simulation, techno-economic and environmental analysis", J. Energy Storage, 62, 106961. https://doi.org/10.1016/j.est.2023.106961.
  36. Shi, L., Zhang, G.M., Yang, W., Huang, D.M., Cheng, X.D. and Setunge, S. (2018), "Determining the influencing factors on the performance of solar chimney in buildings", Renew. Sustain. Energy Rev., 88, 223-238. https://doi.org/10.1016/j.rser.2018.02.033.
  37. Vieira, R.S., Petry, A.P., Rocha, L.A.O., Isoldi, L.A. and Dos Santos, E.D. (2017), "Numerical evaluation of a solar chimney geometry for different ground temperatures by means of constructal design", Renew. Energy, 109, 222-234. https://doi.org/10.1016/j.renene.2017.03.007.
  38. Zamora, B. and Kaiser, AS. (2009), "Optimum wall-to-wall spacing in solar chimney shaped channels in natural convection by numerical investigation", Appl. Therm. Eng., 29(4), 762-769. https://doi.org/10.1016/j.applthermaleng.2008.04.010.