Acknowledgement
The authors thank the Algerian Ministry of Higher Education and Scientific Research (MESRS) for financial support for PRFU Research Project coded: A11N01CU430120220001 (University Center of Mila, Algeria). The authors also take this opportunity to sincerely respect the technical editor and the reviewers for their remarks, comments and suggestions.
References
- Abdeen, A., Serageldin, A.A., Ibrahim, M.G.E., El-Zafarany, A., Ookawara, S. and Murata, R. (2019), "Solar chimney optimization for enhancing thermal comfort in Egypt: An experimental and numerical study", Solar Energy, 180, 524-536. https://doi.org/10.1016/j.solener.2019.01.063.
- Al-Kayiem, H.H., Sreejaya, K.V. and Chikere, A.O. (2018), "Experimental and numerical analysis of the influence of inlet configuration on the performance of a roof top solar chimney", Energy Build., 159, 89-98. https://doi.org/10.1016/j.enbuild.2017.10.063.
- Amori, K.E. and Mohammed, S.W. (2012), "Experimental and numerical studies of solar chimney for natural ventilation in Iraq", Energy Build., 47, 450-457. https://doi.org/10.1016/j.enbuild.2011.12.014.
- Azizi, M.W., Keblouti, O., Boulanouar, L. and Yallese, M.A. (2020), "Design optimization in hard turning of E19 alloy steel by analysing surface roughness, tool vibration and productivity", Struct. Eng. Mech., 73(5), 501-513. https://doi.org/10.12989/sem.2020.73.5.501.
- Bacharoudis, E., Vrachopoulos, M.G., Koukou, M.K., Margaris, D., Filios, A.E. and Mavrommatis S.A. (2007), "Study of the natural convection phenomena inside a wall solar chimney with one wall adiabatic and one wall under a heat flux", Appl. Therm. Eng., 27, 2266-2275. https://doi.org/10.1016/j.applthermaleng.2007.01.021.
- Barkett, B.A.C., Ramirez Camacho, R.G., Tiago Filho, G.L. and da Silva, E.R. (2017), "Optimization of a draft tube using statistical techniques-doe and 2D computational fluid dynamic analysis", J. Appl. Fluid. Mech., 14(6), 1617-1633. https://doi.org/10.47176/jafm.14.06.32314.
- Bassiouny, R. and Korah, N.S.A. (2009), "Effect of solar chimney inclination angle on space flow pattern and ventilation rate", Energy Build., 41, 190-196. https://doi.org/10.1016/j.enbuild.2008.08.009.
- Bensouici, M. and Bensouici, F.Z. (2017), "Entropy generation and optimization of laminar forced convection air cooling in a horizontal channel containing heated sources", J. Appl. Fluid. Mech, 10(1), 819-831. https://doi.org/10.18869/acadpub.jafm.73.240.26847.
- Bensouici, M., Azizi, M.W. and Bensouici, F.Z. (2021), "multi-objective optimization of mixed convection air cooling in an inclined channel with discrete heat sources", Struct. Eng. Mech., 79, 51-66. https://doi.org/10.12989/sem.2021.79.1.051.
- Bouziane, A., Boulanouar, L., Azizi, M.W. and Keblouti, O. (2018), "Analysis of cutting forces and roughness during hard turning of bearing steel", Struct. Eng. Mech., 66(3), 285-294. https://doi.org/doi: 10.12989/sem.2018.66.3.285.
- Burek, S.A.M. and Habeb, A. (2007), "Air flow and thermal efficiency characteristics in solar chimneys and Trombe Walls", Energy Build., 39, 128-135. https://doi.org/10.1016/j.enbuild.2006.04.015.
- Cengel, Y.A. (2008), Introduction to Thermodynamics and Heat Transfer, Second Edition: Property Tables and Charts (SI units), The McGraw-Hill Companies.
- Corcione, M., Fontana, L. and Quintino, A. (2023), "First analysis of a novel design of a solar chimney with absorber elements distributed in the air channel", Appl. Therm. Eng., 230, 120539. https://doi.org/10.1016/j.applthermaleng.2023.120539.
- Da Silva, A.K. and Gosselin, L. (2005), "Optimal geometry of L and C-shaped channels for maximum heat transfer rate in natural convection", Int. J. Heat Mass Transf., 48, 609-620. https://doi.org/10.1016/j.ijheatmasstransfer.2004.08.028.
- Derringer, G. and Suich, R. (1980), "Simultaneous optimization of several response variables", J. Qualit. Technol., 12, 214-219. https://doi.org/10.1080/00224065.
- Dhahri, M. and Aouinet, H. (2020), "CFD investigation of temperature distribution, air flow pattern and thermal comfort in natural ventilation of building using solar chimney", World J. Eng., 17(1), 78-86. https://doi.org/10.1108/WJE-09-2019-0261.
- Gan, G. (2010), "Impact of computational domain on the prediction of buoyancy-driven ventilation cooling", Build. Environ., 45, 1173-1183. https://doi.org/10.1016/j.buildenv.2011.04.014.
- Ghalamchi, M., Kasaeian, A., Ghalamchi, M. and Mirzahosseini, A.H. (2016), "An experimental study on the thermal performance of a solar chimney with different dimensional parameters", Renew. Energy, 91, 477-483. https://doi.org/10.1016/j.renene.2016.01.091.
- Harrington, Jr. E.C. (1965), "The desirability function", Indus. Qualit. Control, 21, 494-498.
- He, G. and Lv, D. (2022), "Distributed heat absorption in a solar chimney to enhance ventilation", Solar Energy, 238, 315-326. https://doi.org/10.1016/j.solener.2022.04.047.
- Hosien, M.A. and Selim, S.M. (2017), "Effects of the geometrical and operational parameters and alternative outer cover materials on the performance of solar chimney used for natural ventilation", Energy Build., 138, 355-367. https://doi.org/10.1016/j.enbuild.2016.12.041.
- Imran, A.A., Jalil, J.M. and Ahmed, S.T. (2015), "Induced flow for ventilation and cooling by a solar chimney", Renew. Energy, 78, 236-244. http://doi.org/10.1016/j.renene.2015.01.019.
- Jafari, S. and Kalantar, V. (2022), "Numerical simulation of natural ventilation with passive cooling by diagonal solar chimneys and windcatcher and water spray system in a hot and dry climate", Energy Build., 256, 111714. https://doi.org/10.1016/j.enbuild.2021.111714.
- Kalantar, V. (2012), "Numerical simulation of airflow in a solar chimney for cooling buildings in the city of Yazd", J. Renew. Sustain. Energy, 4(6), 063147. https://doi.org/10.1063/1.4771883.
- Kalantar, V. and Khayyaminejad, A. (2022), "Numerical simulation of a combination of a new solar ventilator and geothermal heat exchanger for natural ventilation and space cooling", Int. J. Energy Environ. Eng., 13, 785-804. https://doi.org/10.1007/s40095-021-00463-4.
- Khanal, R. and Lei, C. (2011), "Numerical investigation of the ventilation performance of a solar chimney", ANZIAM J., 52, C 899-C913. https://doi.org/10.21914/anziamj.v52i0.3947.
- Khanal, R. and Lei, C. (2012), "Flow reversal effects on buoyancy induced airflow in a solar chimney", Solar Energy, 86, 2783-2794. http://doi.org/10.1016/j.solener.2012.06.015.
- Mathur, J. and Mathur, S. (2006), "Summer- performance of inclined roof solar chimney for natural ventilation", Energy Build., 38, 1156-1163. https://doi.org/10.1016/j.enbuild.2006.01.006.
- Mokheimer, E.M.A., Shakeel, M.R. and Al-Sadah, J. (2017), "A novel design of solar chimney for cooling load reduction and other applications in buildings", Energy Build., 153, 219-230. https://doi.org/10.1016/j.enbuild.2017.08.011.
- Mondal, B., Srivastava, V.C. and Mall, I.D. (2012), "Electrochemical treatment of dye-bath effluent by stainless steel electrodes: Multiple response optimization and residue analysis", J. Environ. Sci. Hlth. Part A, 47, 2040-2051. https://doi.org/10.1080/10934529.2012.695675.
- Montgomery, D.C. (2001), Design and Analysis of Experiments, John Wiley & Sons, New York.
- Namazizadeh, M., Talebian Gevari, M., Mojaddam, M. and Vajdi, M. (2020), "Optimization of the splitter blade configuration and geometry of a centrifugal pump impeller using design of experiment", J. Appl. Fluid. Mech., 13(1), 89-101. https://doi.org/10.29252/JAFM.13.01.29856.
- Rabani, M., Kalantar, V., Dehghan, A.A. and Faghih, A.K. (2015), "Empirical investigation of the cooling performance of a new designed Trombe wall in combination with solar chimney and water spraying system", Energy Build, 102, 45-57. https://doi.org/10.1016/j.enbuild.2015.05.010.
- Ren, X.H., Liu, R.Z., Wang, Y.H., Wang, L. and Zhao, F.Y. (2019), "Thermal driven natural convective flows inside the solar chimney flush-mounted with discrete heating sources: Reversal and cooperative flow dynamics", Renew. Energy, 138, 354-367. https://doi.org/10.1016/j.renene.2019.01.090.
- Saleh, M., Jahromi, B., Kalantar, V., Samimi, H. and Shoeibi, S. (2023), "Performance analysis of a new solar air ventilator with phase change material: numerical simulation, techno-economic and environmental analysis", J. Energy Storage, 62, 106961. https://doi.org/10.1016/j.est.2023.106961.
- Shi, L., Zhang, G.M., Yang, W., Huang, D.M., Cheng, X.D. and Setunge, S. (2018), "Determining the influencing factors on the performance of solar chimney in buildings", Renew. Sustain. Energy Rev., 88, 223-238. https://doi.org/10.1016/j.rser.2018.02.033.
- Vieira, R.S., Petry, A.P., Rocha, L.A.O., Isoldi, L.A. and Dos Santos, E.D. (2017), "Numerical evaluation of a solar chimney geometry for different ground temperatures by means of constructal design", Renew. Energy, 109, 222-234. https://doi.org/10.1016/j.renene.2017.03.007.
- Zamora, B. and Kaiser, AS. (2009), "Optimum wall-to-wall spacing in solar chimney shaped channels in natural convection by numerical investigation", Appl. Therm. Eng., 29(4), 762-769. https://doi.org/10.1016/j.applthermaleng.2008.04.010.