DOI QR코드

DOI QR Code

Regeneration and Acclimatization of Regenerants in Long-term in vitro Culture of Japanese Blood Grass (Imperata cylindrica 'Rubra')

  • Eon-Yak Kim (Department of Plant Production Sciences, Graduate School of Sunchon National University) ;
  • In-Jin Kang (Department of Plant Production Sciences, Graduate School of Sunchon National University) ;
  • Ye-Jin Lee (Department of Plant Production Sciences, Graduate School of Sunchon National University) ;
  • Baul Yang (Department of Plant Production Sciences, Graduate School of Sunchon National University) ;
  • Vipada Kantayos (Department of Botany, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus) ;
  • Chang-Hyu Bae (Department of Plant Production Sciences, Graduate School of Sunchon National University)
  • Received : 2023.11.01
  • Accepted : 2023.11.23
  • Published : 2023.12.01

Abstract

Long-term culture of cell lines is an important issue in in vitro culture and in plant science. In this study, the regeneration ability and ex vitro acclimatization of regenerants were evaluated. The ploidy level of regenerants derived from long-term cultured cell lines was measured in Imperata cylindrica 'Rubra', Poaceae. Adventitious buds (shoots) were successfully induced from five-year-cultured calli on MS medium containing 0.1 mg/L BA or 2.0 mg/L TDZ, combined with 0.01 mg/L auxins (IAA, IBA, NAA and 2,4-D), respectively. Adventitious roots were also induced on MS medium containing 0.01 mg/L auxins (IBA, NAA and 2,4-D), respectively. Interestingly, regenerants with both red and green leaf were successfully obtained when regenerants were cultured on MS medium with 9% sucrose. Regenerants derived from long-term cultured calli were transferred to pots using an optimal acclimatization process and successfully adapted to both pot and soil conditions. Moreover, the ploidy level was measured using calli and regenerants that had been kept on MS medium containing various kinds of plant growth regulators (PGRs).

Keywords

Acknowledgement

This research was supported by the MSIT (Ministy of Science and ICT), Korea, under the Grand Information Technology Research Center support program (IITP-2023-2020-0-01489) supervised by the IITP (Institute for Information & communications Technology Planning & Evaluation).

References

  1. Armando, A.-S.G., A. Velazquez-Ordinola, B. Moreno-Gomez, L. Marina Gomez-Torres, L. Febronio Diaz-Espino and F.P. Gamez Vazquez. 2011. Development of long-term and reliable in vitro plant regeneration systems for elite malting barley varieties: optimizing media formulation and explant selection. Afr. J. Biotechnol. 10(84):19522-19533.
  2. Bajaj, S. and M.V. Rajam. 1995. Efficient plant regeneration from long-term callus cultures of rice by spermidine. Plant Cell Rep. 14(11):717-20. https://doi.org/10.1007/BF00232654
  3. Bajaj, S. and M.V. Rajam. 1996. Polyamine accumulation and near loss of morphogenesis in long-term callus cultures of rice (Restoration of plant regeneration by manipulation of cellular polyamine levels). Plant Physiol. 112(3):1343-1348. https://doi.org/10.1104/pp.112.3.1343
  4. Chai, M., Y. Jia, S. Chen, Z. Gao, H. Wang, L. Liu, P. Wang and D. Hou. 2011. Callus induction, plant regeneration, and long-term maintenance of embryogenic cultures in Zoysia matrella [L.] Merr. Plant Cell, Tissue Organ Cult. 104:187-192. https://doi.org/10.1007/s11240-010-9817-2
  5. Cho, J.-H. and J.-H. Byeon. 2011. Establishment of callus induction and plant regeneration system from mature seeds of Miscanthus sinensis. Korean J. Plant Res. 24(5):628-635. https://doi.org/10.7732/kjpr.2011.24.5.628
  6. Cousin, A., K. Heel, W.A. Cowling and M.N. Nelson. 2009. An efficient high-throughput flow cytometric method for estimating DNA ploidy level in plants. Cytometry A. 75A:1015-1019. https://doi.org/10.1002/cyto.a.20816
  7. Dewir, Y.H., Nurmansyah, Y. Naidoo and J.A.T. da Silva. 2018. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep. 37:1451-1470. https://doi.org/10.1007/s00299-018-2326-1
  8. Fatiha, B., S.-R. Carolina and M. Carmen. 2019. Somaclonal variation in olive (Olea europaea L.) plants regenerated via somatic embryogenesis: Influence of genotype and culture age on genetic stability. Sci. Hortic. 251:260-266. https://doi.org/10.1016/j.scienta.2019.03.010
  9. Ferreira, M.D.S., A.D.J. Rocha, F.D.S. Nascimento, W.D.D.S. Oliveira, J.M.D.S. Soares, T.A. Reboucas, L.S.M. Lino, F. Haddad, C.F. Ferreira, J.A.D. Santos-Serejo, J.S. Fernandez and E.P. Amorim. 2023. The role of somaclonal variation in plant genetic improvement: A aystematic review. Agronomy 13(3):730. https://doi.org/10.3390/agronomy13030730.
  10. Garcia, C., A.-A.F. de Almeida, M. Costa, D. Brito, R. Valle, S. Royaert and J.-P. Marelli. 2019. Abnormalities in somatic embryogenesis caused by 2,4-D: an overview. Plant Cell, Tissue Organ Cult. 137:193-212. https://doi.org/10.1007/s11240-019-01569-8
  11. Goh, E.J., E.S. Seong, J.H. Yoo, H.Y. Kil, J.G. Lee, I.S. Hwang, N.-j. Kim, B.K. Ghimire, M.J. Kim, J.K. Lee, J.D. Lim, N.Y. Kim and C.Y. Yu. 2011. Effect of plant growth regulators and media on regeneration of Sorghum bicolor (L) Moench. Korean J. Plant Res. 24(2):168-173. https://doi.org/10.7732/kjpr.2011.24.2.168
  12. Hans, M., V. Danny, G. Danny and W. Stefann. 2014. The molecular path to in vitro shoot regeneration. Biotechnol. Adv. 32:107-121. https://doi.org/10.1016/j.biotechadv.2013.12.002
  13. Jin, S., R. Mushke, H. Zhu, L. Tu, Z. Lin, Y. Zhang and X. Zhang. 2008. Detection of somaclonal variation of cotton (Gossypium hirsutum) using cytogenetics, flow cytometry and molecular markers. Plant Cell Rep. 27:1303-1316. https://doi.org/10.1007/s00299-008-0557-2
  14. Kaminska, M. and E. Sliwinska. 2023. Effective micropropagation of kale (Brassica oleracea convar. Acephala var. sabellica): one of the most important representatives of Cruciferae crops. Plant Cell, Tissue Organ Cult. 153:601-609. https://doi.org/10.1007/s11240-023-02497-4
  15. Kang, I.-J., Y.-J. Lee and C.-H. Bae. 2021. In vitro regeneration and genetic stability analysis of the regenerated green plants in Japanese blood grass (Imperata cylindrica 'Rubra'). Korean J. Plant Res. 34(2):156-165 (in Korean). https://doi.org/10.7732/KJPR.2021.34.2.156
  16. Kavi Kishor, P.B. and G.M. Reddy. 1986. Regeneration of plants from long-term cultures of Oryza sativa L. Plant Cell Rep. 5(5):391-393. https://doi.org/10.1007/BF00268610
  17. Lee, Y.-J., E.-Y. Kim and C.-H. Bae. 2023a. Expression of organogenesis-related genes of the plant-materials induced in the process of in vitro organogenesis of Japanese blood grass, and organogenesis-related genes in plants. Proceeding of the Plant Resources Society of Korea. April 27~28, 2023. Pyeong-Chang, Korea. p. 34 (in Korean).
  18. Lee, Y.-J., I.-J. Kang and C.-H. Bae. 2023b. Expression of organogenesis-related genes and analysis of genetic stability by ISSR markers of regenerants derived from the process of in vitro organogenesis in Japanese blood grass (Imperata cylindrica 'Rubra'). Korean J. Plant Res. 36(5):496-507 (in Korean).
  19. Lee, Y.-J., K.S. Hwang and P.S. Choi. 2023c. Effect of carbon sources on somatic embryogenesis and cotyledon number variations in carrot (Daucus carota L.). J. Plant Biotechnol. 50:089-095.
  20. Liu, Q.Q., C. Zhang, J.C. Zhou, Q.J. Dong, L.X. Huo and H. Dong. 2020. One simple, rapid and economical method for ploidy detection of Trichogramma dendrolimi Matsumura (Hymenoptera Trichogramma -tidae). J. Asia Pac. Entomol. 23(2):345-349. https://doi.org/10.1016/j.aspen.2019.12.010
  21. Meng, R. and C. Finn. 2002. Determining ploidy level and nuclear DNA content in Rubus by flow cytometry. J. Am. Soc. Hortic. Sci. 127(5):767-775. https://doi.org/10.21273/JASHS.127.5.767
  22. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  23. Nabors, M.W., J.W. Heyser, T.A. Dykes and K.J. Demott. 1983. Long-duration, high-frequency plant regeneration from cereal tissue cultures. Planta 157(5):385-391. https://doi.org/10.1007/BF00397195
  24. Rebouillat, J., A. Dievart, L. Verdeil, J. Escoute, G. Giese, J.C. Breitler, P. Gantet, S. Espeout, E. Guiderdoni and C. Perin. 2009. Molecular genetics of rice root development. Rice 2:15-34. https://doi.org/10.1007/s12284-008-9016-5
  25. Ryu, J.H., E.H. Kim, H.S. So, M.Y. Chung, W.S. Song and C.H. Bae. 2013a. Plant regeneration and genetic diversity of regenerants from seed-derived callus of reed (Phragmites communis Trinius). Korean J. Plant Res. 26(2):320-327 (in Korean). https://doi.org/10.7732/kjpr.2013.26.2.320
  26. Ryu, J.H., H.Y. Lee and C.H. Bae. 2013b. Variation analysis of long-term in vitro cultured Cymbidium goeringii Lindley and Cymbidium kanran Makino. Korean J. Plant Res. 24(2):139-149 (in Korean). https://doi.org/10.7732/kjpr.2011.24.2.139
  27. Seo, P.-J. 2018. Epigenetic Mechanism Related to Dedifferentiation in Plants. Molecular and Cellular Biology Newsletter pp. 1-6 (in Korean).
  28. Sharma, V.K., R. Hansch, R.R. Mendel and J. Schulze. 2008. Influence of picloram and thidiazuron on high frequency plant regeneration in elite cultivars of wheat with long-term retention of morphogenecity using meristematic shoot segments. Plant Breed. 124(3):242-246.
  29. Shigeki, Y., Y. Kutsuna, K. Yamamoto, H. Isobe, T. Abe, M. Hashiguchi and R. Akashi. 2009. Establishment of multiple shoot formation from apical meristems and dwarf strain induced by heavy ion beam irradiation in cogongrass (Imperata cylindrica L.). Jpn. J. Grassl. Sci. 34:333-335 (in Japanese).
  30. Tomaszewska, P., T.K. Pelly, L.M. Hernὰndez, R.A.C. Mitchell, V. Castiblanco, J.J. de Vaga, T. Schwarzacher and P. Heslop-Harrison. 2021. Flow cytometry-based determination of ploidy from dried leaf specimens in genomically complex collections of tropical forage grass Urochloa s. 1. Genes 12: 957. http://doi.org/10.3390/genes12070957.
  31. Umami, N., T. Gondo, H. Tanaka, M.M. Rahman and R. Akashi. 2012. Efficient nursery plant production of dwarf cogongrass (Imperata cylindrica L.) through mass propagation in liquid culture. Grassl. Sci. 58:201-207. https://doi.org/10.1111/grs.12001
  32. White, D.W. 1984. Plant regeneration from long-term suspension cultures of white clover. Planta 162(1):1-7. https://doi.org/10.1007/BF00397413
  33. Yang, Y.S., Y.D. Zheng, Y.L. Chen and Y.Y. Jian. 1999. Improvement of plant regeneration from long-term cultured calluses of Taipei 309, a model rice variety on in vitro studies. Plant Cell, Tissue Organ Cult. 57:199-206. https://doi.org/10.1023/A:1006329323694
  34. Zhang, L., J.J. Rybczynski, W.G. Langenberg, A. Mitra and R. French. 2000. An efficient wheat transformation procedure: transformed calli with long-term morphogenic potential for plant regeneration. Plant Cell Rep. 19(3):241-250. https://doi.org/10.1007/s002990050006