과제정보
This work was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (No. IITP-2022-2020-0-01797) supervised by the IITP (Institute for Information & Communications Technology Planning & Evaluation). Additionally, this research was funded by an IITP grant as a part of the Convergence Security Core Talent Training Business at Pusan National University (No. 2022-0-01201).
참고문헌
- Aakash, A., & Gupta Aggarwal, A. (2022). Assessment of hotel performance and guest satisfaction through eWOM: big data for better insights. International Journal of Hospitality & Tourism Administration, 23(2), 317-346. https://doi.org/10.1080/15256480.2020.1746218
- Alzahrani, S., Wang, Q., & Rana, O. (2022). Latent Dirichlet Allocation for Customer Satisfaction Analysis in Online Reviews. Journal of E-Commerce Research, 16(2), 145-158.
- Ansari, G., Gupta, S., & Singhal, N. (2020). Natural Language Processing in Online Reviews. Journal of E-commerce and Digital Marketing, 8(1), 34-47.
- Bauer, J., & Jannach, D. (2021). Improved Customer Lifetime Value Prediction With Sequence-To-Sequence Learning and Feature-Based Models. Journal of E-commerce Research, 21(3), 45-60. https://doi.org/10.1145/3441444
- Chen, J., Yuan, S., Lv, D., & Xiang, Y. (2021). A novel self-learning feature selection approach based on feature attributions. Expert Systems with Applications, 183, 115219.
- Chen, Y., & Xie, J. (2008). Online customer review: Word-of-mouth as a new element of marketing communication mix. Management science, 54(3), 477-491.
- Chernyaeva, O. ., & Hong, T. . (2022). The Detection of Online Manipulated Reviews Using Machine Learning and GPT-3. Journal of Intelligence and Information Systems, 28(4), 347-364. https://doi.org/10.13088/JIIS.2022.28.4.347
- Cui, G., Lui, H. K., & Guo, X. (2012). The effect of online customer reviews on new product sales. International Journal of Electronic Commerce, 17(1), 39-58. https://doi.org/10.2753/JEC1086-4415170102
- Darko, A. P., & Liang, D. (2022). Modeling customer satisfaction through online reviews: A FlowSort group decision model under probabilistic linguistic settings. Expert Systems with Applications, 195, 116649.
- Darst, B. F., Malecki, K. C., & Engelman, C. D. (2018). Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC genetics, 19(1), 1-6. https://doi.org/10.1186/s12863-018-0633-8
- Ding, X., Yang, F., & Ma, F. (2022). An efficient model selection for linear discriminant function-based recursive feature elimination. Journal of Biomedical Informatics, 129, 104070.
- Du, C., & Huang, L. (2018). Text classification research with attention-based recurrent neural networks. International Journal of Computers Communications & Control, 13(1), 50-61. https://doi.org/10.15837/ijccc.2018.1.3142
- Engler, T. H., Winter, P., & Schulz, M. (2015). Understanding online product ratings: A customer satisfaction model. Journal of Retailing and Customer Services, 27, 113-120. https://doi.org/10.1016/j.jretconser.2015.07.010
- Guo, J., Wang, Z., Jin, Y., Li, M., & Chen, Q. (2023). Predicting and extracting thermal behavior rules of hydronic thermal barrier with interpretable ensemble learning in the heating season. Energy and Buildings, 113699.
- He, J., Hu, D., Zhang, W., & Liu, T. (2020). Probabilistic Topic Modeling for Sentiment Analysis of Online Reviews. Journal of Business Analytics, 7(3), 210-227.
- Herrera, G. P., Constantino, M., Su, J. J., & Naranpanawa, A. (2023). The use of ICTs and income distribution in Brazil: A machine learning explanation using SHAP values. Telecommunications Policy, 47(8), 102598.
- Hong, A. C. Y., Khaw, K. W., Chew, X., & Yeong, W. C. (2023). Prediction of US airline passenger satisfaction using machine learning algorithms. Data Analytics and Applied Mathematics (DAAM), 8-24.
- Jing, H., Yang, P., & Lin, H. (2023). A Multilayer Stacking Method Base on RFE-SHAP Feature Selection Strategy for Recognition of Driver's Mental Load and Emotional State. Expert Systems with Applications, 121729.
- Johar, S., & Mubeen, S. (2020). Sentiment analysis on large scale Amazon product reviews. IJSRCSE, 8(1), 7-15. https://doi.org/10.26438/ijsrcse/v8i1.715
- Kang, D., & Park, Y. (2014). based measurement of customer satisfaction in mobile service: Sentiment analysis and VIKOR approach. Expert Systems with Applications, 41(4), 1041-1050. https://doi.org/10.1016/j.eswa.2013.07.101
- Kannari, P. R., Chowdary, N. S., & Biradar, R. L. (2022). An anomaly-based intrusion detection system using recursive feature elimination technique for improved attack detection. Theoretical Computer Science, 931, 56-64. https://doi.org/10.1016/j.tcs.2022.07.030
- Karim, A., & Das, R. (2018). Rule-based vs. Machine Learning: A Comparative Study on Sentiment Analysis and LDA. International Journal of Data Science, 5(1), 56-68.
- Kumar, S., Yadava, M., & Roy, P. (2019). Fusion of EEG response and sentiment analysis of products review to predict customer satisfaction. Information Fusion, 47, 124-133. https://doi.org/10.1016/j.inffus.2018.11.001
- Lin, C. L., Lee, S. H., & Horng, D. J. (2011). The effects of online reviews on purchasing intention: The moderating role of need for cognition. Social Behavior and Personality: an international journal, 39(1), 71-81. https://doi.org/10.2224/sbp.2011.39.1.71
- Liu, B., Zhou, X., Jiang, P., & Zhang, L. (2020). Customer Satisfaction in B2C E-commerce: An LDA Approach. E-Commerce Research and Applications, 14(4), 301-315.
- Liu, M., Lu, X., & Song, J. (2016). A New Feature Selection Method for Text Categorization of Customer Reviews. E-commerce Research Letters, 10(1), 5-15. https://doi.org/10.1080/03610918.2013.833227
- Maharani, A.P., & Triayudi, A. (2022). Sentiment Analysis of Indonesian Digital Payment Customer Satisfaction Towards GOPAY, DANA, and ShopeePay Using Naive Bayes and K-Nearest Neighbour Methods. Management and Informatics Business Journal, 6(1), 1-10. https://doi.org/10.30865/mib.v6i1.3545
- Matuszelanski, K., & Kopczewska, K. (2022). Customer Churn in Retail E-Commerce Business: Spatial and Machine Learning Approach. International Journal of E-commerce Studies, 15(2), 120-138. https://doi.org/10.3390/jtaer17010009
- Mudambi, S. M., & Schuff, D. (2010). Research note: What makes a helpful online review? A study of customer reviews on Amazon. com. MIS quarterly, 185-200.
- Park, S., & Lee, S.-Y. T. (2023). A Study on the Relationship between Social Media ESG Sentiment and Firm Performance. Journal of Intelligence and Information Systems, 29(3), 317-340. https://doi.org/10.13088/JIIS.2023.29.3.317
- Park, Y.-J., & Kim, K.-j. (2017). Impact of Semantic Characteristics on Perceived Helpfulness of Online Reviews. Journal of Intelligence and Information Systems, 23(3), 29-44. https://doi.org/10.13088/JIIS.2017.23.3.029
- Pelegrina, G. D., Duarte, L. T., & Grabisch, M. (2023). A k-additive Choquet integral-based approach to approximate the SHAP values for local interpretability in machine learning. Artificial Intelligence, 325, 104014.
- Ren, Y., Wang, R., & Ji, D. (2016). A topic-enhanced word embedding for Twitter sentiment classification. Information Sciences, 369, 188-198. https://doi.org/10.1016/j.ins.2016.06.040
- Ren, Y., Wang, R., & Ji, D. (2016). A topic-enhanced word embedding for Twitter sentiment classification. Information Sciences, 369, 188-198. https://doi.org/10.1016/j.ins.2016.06.040
- Samb, M. L., Camara, F., Ndiaye, S., Slimani, Y., & Esseghir, M. A. (2012). A novel RFE-SVM-based feature selection approach for classification. International Journal of Advanced Science and Technology, 43(1), 27-36.
- Uthirapathy, S. E., & Sandanam, D. (2023). Topic Modelling and Opinion Analysis On Climate Change Twitter Data Using LDA And BERT Model. Procedia Computer Science, 218, 908-917. https://doi.org/10.1016/j.procs.2023.01.071
- Van den Broeck, G., Lykov, A., Schleich, M., & Suciu, D. (2022). On the tractability of SHAP explanations. Journal of Artificial Intelligence Research, 74, 851-886. https://doi.org/10.1613/jair.1.13283
- Wisnu, H., Afif, M., & Ruldevyani, Y. (2020). Sentiment analysis on customer satisfaction of digital payment in Indonesia: A comparative study using KNN and Naive Bayes. Journal of Physics: Conference Series, 1444(1), 012034.
- Xu, H., Li, Z., Chu, C., Chen, Y., Yang, Y., Lu, H., Wang, H., & Stavrou, A. (2018). Detecting and Characterizing Web Bot Traffic in a Large E-commerce Marketplace. International Journal of E-commerce Research, 16(3), 201-218. https://doi.org/10.1007/978-3-319-98989-1_8
- Yu, D., Fang, A., & Xu, Z. (2023). Topic research in fuzzy domain: Based on LDA topic modelling. Information Sciences, 648, 119600.
- Zhang, J., Ma, X., Zhang, J., Sun, D., Zhou, X., Mi, C., & Wen, H. (2023). Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. Journal of Environmental Management, 332, 117357.
- Zhang, M., & Luo, L. (2023). Can customer-posted photos serve as a leading indicator of restaurant survival? Evidence from Yelp. Management Science, 69(1), 25-50.