Acknowledgement
본 연구에 참여해 음성 데이터를 제공해 주신 모든 대상자분들에게 감사의 말씀을 전합니다.
References
- Altinkaya, M., & Smeulders, A. W. M. (2020, October). A dynamic, self supervised, large scale audiovisual dataset for stuttered speech. Proceedings of the 1st International Workshop on Multimodal Conversational AI (pp. 9-13). Seattle, WA.
- Barrett, L., Hu, J., & Howell, P. (2022). Systematic review of machine learning approaches for detecting developmental stuttering. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 30, 1160-1172. https://doi.org/10.1109/TASLP.2022.3155295
- Bayerl, S. P., von Gudenberg, A. W., Honig, F., Noth, E., & Riedhammer, K. (2022, June). KSoF: The Kassel state of fluency dataset -A therapy centered dataset of stuttering. Proceedings of the 13th Conference on Language Resources and Evaluation (pp. 1780-1787). Marseille, France.
- Bhushan, P. S., Vani, H. Y., Shivkumar, D. K., & Sreeraksha, M. R. (2021). Stuttered Speech Recognition using Convolutional Neural Networks, International Journal of Engineering Research & Technology, 9(12), 250-254.
- Das, A., Mock, J. Irani, F., Huang, Y., Najafirad, P., & Golob, E. (2022). Multimodal explainable AI predicts upcoming speech behavior in adults who stutter. Frontiers in Neuroscience, 16:912798.
- Fang, S. H., Tsao, Y., Hsiao, M. J., Chen, J. Y., Lai, Y. H., Lin, F. C., & Wang, C. T. (2019). Detection of pathological voice using cepstrum vectors: A deep learning approach. Journal of Voice, 33(5), 634-641. https://doi.org/10.1016/j.jvoice.2018.02.003
- Garg, U., Agarwal, S., Gupta, S., Dutt, R., & Singh, D. (2020, September). Prediction of emotions from the audio speech signals using MFCC, MEL and Chroma. Proceedings of the 12th International Conference on Computational Intelligence and Communication Networks (CICN). Bhimtal, India.
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, UK: MIT Press.
- Guitar, B. (2019). Stuttering: An integrated approach to its nature and treatment. Baltimore, PA: Lippincott Williams.
- Hariharan, M., Chee, L. S., Ai, O. C., & Yaacob, S. (2012). Classification of speech disfluencies using LPC based parameterization techniques. Journal of Medical Systems, 36(3), 1821-1830. https://doi.org/10.1007/s10916-010-9641-6
- Howell, P., Sackin, S., & Glenn, K. (1997). Development of a two-stage procedure for the automatic recognition of dysfluencies in the speech of children who stutter: II. ANN recognition of repetitions and prolongations with supplied word segment markers. Journal of Speech, Language, and Hearing Research, 40(5), 1085-1096. https://doi.org/10.1044/jslhr.4005.1085
- Jeon, H. S., & Jeon, H. E. (2015). Characteristics of disfluency clusters in adults who stutter. Journal of Speech-Language & Hearing Disorders, 24(1), 135-144. https://doi.org/10.15724/jslhd.2015.24.1.011
- Jo, C., Wang, S. G., & Kwon, I. (2022). Performance comparison on vocal cords disordered voice discrimination via machine learning methods. Phonetics and Speech Sciences, 14(4), 35-43. https://doi.org/10.13064/KSSS.2022.14.4.035
- Kully, D., & Boberg, E. (1988). An investigation of interclinic agreement in the identification of fluent and stuttered syllables. Journal of Fluency Disorders, 13(5), 309-318. https://doi.org/10.1016/0094-730X(88)90001-0
- Lee, Y. H. (2017). Speech/audio processing based on deep learning. Broadcasting and Media Magazine, 22(1), 47-58.
- Mishra, N., Gupta, A., & Vathana, D. (2021). Optimization of stammering in speech recognition applications. International Journal of Speech Technology, 24(2), 679-685. https://doi.org/10.1007/s10772-021-09828-w
- Park, J., Oh, S. Y., Jun, J. P., & Kang, J. S. (2015). Effects of background noises on speech-related variables of adults who stutter. Phonetics and Speech Sciences, 7(1), 27-37. https://doi.org/10.13064/KSSS.2015.7.1.027
- Prabhu, Y., & Seliya, N. (2022, December). A CNN-based automated stuttering identification system. Proceeding of the 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA). Nassau, Bahamas.
- Ravikumar, K. M., Rajagopal, R., & Nagaraj, H. C. (2009). Stuttered Speech Using MFCC Features. ICGST International Journal on Digital Signal Processing, 9, 19-24.
- Riley, G. D. (1972). A stuttering severity instrument for children and adults. Journal of Speech and Hearing Disorders, 37(3), 314-322. https://doi.org/10.1044/jshd.3703.314
- Sheikh, S. A., Sahidullah, M., Hirsch, F., & Ouni, S. (2022). Machine learning for stuttering identification: Review, challenges and future directions. Neurocomputing, 514, 385-402. https://doi.org/10.1016/j.neucom.2022.10.015
- Shim, H. S., Shin, M. J., & Lee, E. J. (2010). Paradise Fluency Assessment-II (P-FA-II). Seoul: Paradise Welfare Foundation.
- Shim, H. S., Shin, M. J., Lee, E. J., Lee, K. J., & Lee, S. B. (2022). Fluency disorders: Assessment and treatment. Seoul: Korea.
- Tichenor, S. E., Constantino, C., & Scott Yaruss, J. (2022). A point of view about fluency. Journal of Speech, Language, and Hearing Research, 65(2), 645-652. https://doi.org/10.1044/2021_JSLHR-21-00342
- Van Riper, C. (1972). Speech correction: Principles and methods(5th ed.). Englewood Cliffs, NJ: Prentice-Hall.
- Wisniewski, M., Kuniszyk-Jozkowiak, W., Smolka, E., & Suszynski, W. (2007). Automatic detection of disorders in a continuous speech with the hidden Markov models approach. In M. Kurzynski, E. Puchala, M. Wozniak, & A. Zolnierek (Eds.), Computer recognition systems 2: Advances in soft computing (pp. 445-453). Berlin, Heidelberg: Springer.
- Yang, B., Wu, J., Zhou, Z., Komiya, M., Kishimoto, K., Xu, J., Nonaka, K., ... Horiuchi, T. (2021, October). Facial action unit-based deep learning framework for spotting macro- and micro-expressions in long video sequences. Proceedings of the 29th ACM International Conference on Multimedia (pp. 4794-4798). Chengdu, China.
- Yaruss, S. J. (1997). Utterance timing and childhood stuttering. Journal of Fluency Disorders, 22(4), 263-286. https://doi.org/10.1016/S0094-730X(97)00023-5