
International Journal of Advanced Smart Convergence Vol.12 No.4 134-141 (2023) 

http://dx.doi.org/10.7236/IJASC.2023.12.4.134 

 

Copyright©  2023 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms of 

the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) 

 
 

Refinement of Ground Truth Data for X-ray Coronary Artery Angiography 

(CAG) using Active Contour Model 

 

 

Dongjin Han 

 
Department of Fire Safety, Kyung-Il university, Associate Professor 

han@kiu.ac.kr 
 

Youngjoon Park 
                                                                   

Department of Radiological Technology, Cheju-Halla University, Assistant Professor                                                              
joon740@chu.ac.kr 

Abstract 

We present a novel method aimed at refining ground truth data through regularization and modification, 

particularly applicable when working with the original ground truth set. Enhancing the performance of deep 

neural networks is achieved by applying regularization techniques to the existing ground truth data. In many 

machine learning tasks requiring pixel-level segmentation sets, accurately delineating objects is vital. 

However, it proves challenging for thin and elongated objects such as blood vessels in X-ray coronary 

angiography, often resulting in inconsistent generation of ground truth data. This method involves an analysis 

of the quality of training set pairs - comprising images and ground truth data - to automatically regulate and 

modify the boundaries of ground truth segmentation. Employing the active contour model and a recursive 

ground truth generation approach results in stable and precisely defined boundary contours. Following the 

regularization and adjustment of the ground truth set, there is a substantial improvement in the performance 

of deep neural networks. 
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1. Introduction 

Is 'ground truth' truly the ultimate truth? The task of ground truth labeling for training data stands as one of 

the most pivotal aspects of any machine learning system. In the realm of cardiology, X-ray coronary 

angiography stands as the gold standard for evaluating and identifying coronary artery abnormalities. Yet, 

detecting blood vessels in coronary angiograms presents an intricate challenge. These angiograms often exhibit 

non-uniform illumination, weak contrast between arteries and the image background, and occlusion due to 

various organs or medical devices. Numerous successful methods have been proposed to detect and estimate 
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coronary arteries in X-ray angiography. These methods employ diverse models and filters, specifically 

designed for identifying elongated objects [1–3]. However, the recent surge in neural network-based 

technologies has exhibited exceptional performance across various domains of computer vision, including 

medical image analysis. This surge has led to a rapid influx of works utilizing deep neural network-based 

methods for coronary artery detection in X-ray angiography [4–8].  

Deep learning methods heavily rely on robust ground truth. Recent studies underscore how the performance 

of deep networks is significantly influenced by the size and quality of the training data. Achieving high 

performance often hinges on a large number of meticulously annotated training samples, a task demanding 

substantial human effort. The creation and curation of ground truth for datasets stand as paramount and critical 

issues in tasks such as recognition, segmentation, and other data-driven methodologies. 

 

Generating high-quality ground truth remains a highly demanding and time-consuming endeavor. Numerous 

researchers and experts invest considerable time and effort in the generation of labeled datasets. Insufficient 

or flawed ground truth can markedly degrade the performance of devised systems [7]. For precise automatic 

medical image segmentation, pixel-level annotations play a crucial role. Accurate annotations are pivotal for 

optimizing the performance of deep networks. However, manual labeling, while essential, poses inherent 

challenges, notably in dealing with thin and elongated objects like vessels within X-ray coronary angiography 

(CAG). In Figures 1 and 2, the boundaries of X-ray coronary arteries appear blurry and complex, rendering 

precise manual annotation more challenging. The inherent difficulty in defining clear and unique boundaries 

complicates this task. Additionally, manual annotation is inherently subjective, influenced by operator skill, 

habitual practices, and performance. Operator discretion plays a role, where some vessels might be overlooked 

due to their perceived lower relevance in disease diagnosis. Medical professionals might prioritize certain 

coronary arteries over others, leaving some arteries unmarked. Figures 1 and 2 highlight the pruning of 

numerous small vessels in the original image (a), evident in the mask image (b). While these pruned vessels 

might not significantly contribute to disease diagnosis or evaluation, their absence can notably affect the 

consistency and performance of deep networks. The inter-observer variation commonly present in medical 

image interpretations further complicates matters. Annotation tasks are inherently subjective and subject to 

operator influence, such as skill, habitual practices, and individual performance. Consequently, some vessels 

might be overlooked due to their perceived lower relevance in disease diagnosis. Medical professionals might 

(a) X-ray angiography  (b) Ground truth mask 

Figure 1. Coronary angiography and its ground-truth mask 
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prioritize certain crucial coronary arteries while leaving other vessels unmarked. The removal of small vessels, 

as depicted in Figure 2, may not heavily impact disease diagnosis, yet it significantly influences the algorithm's 

consistency and performance.  

The need for refining and modifying ground truth arises from several factors: 

1. Blurry vessel boundaries 

2. Inaccurate manual segmentation 

3. Unmarked objects such as excluded arteries, catheters, and medical equipment 

4. Inter-observer variation 

5. Alteration of the project's purpose or goal 

To address items 1 and 2, subtle modifications and reshaping will be applied to the ground truth. Regarding 

the third item, high-level knowledge is necessary. For the fourth item, the annotation philosophy for the same 

data may be reconsidered, or adjustments to the target region could be made. Rather than starting from scratch, 

if feasible, automatic consistent modifications can be made to existing ground truth data. It's important to note 

that our proposed method does not fall under the umbrella of 'Data augmentation'. Data augmentation typically 

involves artificially increasing the size of the training dataset by manipulating existing data. Our method differs 

from this technique. 

 

2. Method 

Given ground truth data, which is segmentation masks, the active contour method will modify the ground 

truth segmentation masks. Active contour model-based contour modification algorithm is very robust and 

practical one which shows outstanding performance in segmenting enclosed objects. The boundary contour 

will shrink or expand locally according to image gradient and its constraint. Throughout our experiments, 

slight modifications are allowed to prevent significant divergence from the original shape of the contour. To 

enhance accuracy, we employ a recursive method to include smaller vessel branches and artificial objects, such 

as catheters. This iterative refinement process aims to improve the overall quality of the training ground truth 

set. Once the entire training ground truth set has been appropriately modified, the deep neural network training 

will commence. 

(a) X-ray angiography with 

catheter 

 (b) Simplified ground truth 

mask 
Figure 2. Omitted arteries and catheter 
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2. 1 Active Contour Model (Snakes) 

The regularization of ground truth masks employs the active contour (snake) method, where the contour 

evolves over time based on intrinsic geometric measures of the image. This evolutionary process naturally 

facilitates the splitting and merging of contours, enabling the concurrent detection of multiple objects as well 

as the delineation of both interior and exterior boundaries. The proposed approach hinges on the correlation 

between active contours and the computation of geodesics or minimal distance curves. These minimal distance 

curves exist in a Riemannian space characterized by a metric defined by the content of the image. This geodesic 

approach for object segmentation allows to connect classical “snakes” based on energy minimization and 

geometric active contours based on the theory of curve evolution. Formal results concerning existence, 

uniqueness, stability, and correctness of the evolution were well-proven [9-11]. Given an initial guess for a 

contour (snake), the energy function of the snake is iteratively minimized using gradient descent minimization. 

Each iteration takes one step in the negative gradient of the point with controlled step size γ to find local 

minima. To prevent excessive deviation from the original shape, a constraint term, 𝐸𝑐𝑜𝑛, is introduced. This 

term serves to enforce adherence to the initially provided shape. The energy function of our snake model is 

defined as the sum of its continuous external and internal energy function. 

𝐸𝑠𝑛𝑎𝑘𝑒
∗ = ∫ 𝐸𝑠𝑛𝑎𝑘𝑒(𝑉(𝑠))

1

0
𝑑𝑠 = ∫ 𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙(𝑉(𝑠))

1

0
+ 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝑉(𝑠))𝑑𝑠            (1) 

where 𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 and 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 represent the internal elastic and curvature energy and external gradient-

based energy functions, respectively.  Active contour model typically employs elasticity and curvature 

constraint as internal energy function and edge-based and region-based energy as external. The snake model 

minimizes a total energy function comprising both internal and external energy terms. It iteratively adjusts the 

snake's contour by balancing the internal forces that maintain its smoothness and shape against the external 

forces that guide it towards object boundaries or edges in the image. It can be written again as: 

𝐸𝑠𝑛𝑎𝑘𝑒
∗ = ∫ 𝐸𝑠𝑛𝑎𝑘𝑒(𝑉(𝑠))

1

0
𝑑𝑠 = ∫ 𝐸internal(𝑉(𝑠))

1

0
+  𝐸external(𝑉(𝑠)) +  𝐸𝑐𝑜𝑛(𝑉(𝑠))𝑑𝑠      (2)  

𝐸𝑐𝑜𝑛 is introduced. Minimizing the energy function leads to modifications in the original shape. The update 

function can be represented by the following form: 

𝑣�̅� ← 𝑣�̅� + 𝐹𝑠𝑛𝑎𝑘𝑒(𝑣�̅�) 

where 𝐹𝑠𝑛𝑎𝑘𝑒(𝑣�̅�) is the force on the snake. The update function can be defined by considering the negative 

gradient of the energy field. This gradient guides the minimization process, facilitating alterations to the 

original shape.  

𝐹𝑠𝑛𝑎𝑘𝑒(𝑣𝑖) = −∇𝐸snake(𝑣�̅�) = −(𝜔𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙∇𝐸internal(𝑣�̅�) + 𝜔𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙∇𝐸external(𝑣�̅�))     (3) 

Assuming the weights α(s) and β(s) are constant with respect to s, this iterative method can be simplified to 

𝑣�̅� ← 𝑣�̅� − 𝛾{𝑤𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 [𝛼
𝜕2�̅�

𝜕𝑠2
(𝑣�̅�) + 𝛽

𝜕4�̅�

𝜕𝑠4
(𝑣�̅�)] + ∇𝐸ext(𝑣�̅�)}                        (4) 
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 In practice, 

images have finite resolution and can only be integrated over finite time steps. And the step size γ will give us 

maximum deviation from the original shape of mask contour for each iteration. As the main objective of this 

work is to refine the original mask for accurate ground truth generation, it is crucial to minimize deviation 

from the provided ground truth masks. The emphasis lies in maintaining fidelity to the given ground truth 

masks throughout the modification process. To achieve this, a small value for γ is deliberately chosen.  

 

3. Experiments 

The well-known U-net architecture [8] was utilized for vessel segmentation, implemented on an Nvidia 

DGX-1 server equipped with 8 Tesla V100 GPUs. Our training dataset comprises 147 x-ray coronary artery 

angiography images, each paired with corresponding labeled data. These labeled data were meticulously 

generated by expert medical imaging professionals, covering a range of 14 distinct view angles within the 

dataset. For evaluation, we employed a separate test set obtained from a different patient, consisting of 230 

images accompanied by their respective ground truth masks. 

Our experimental approach involved the application of the active contour model to refine and delineate 

vessel boundaries, thereby enhancing the accuracy of the ground truth. The Dice Similarity Coefficient (DSC) 

score was employed for evaluation. The results notably indicate a significant improvement in vessel detection 

performance. Specifically, the modified ground truth trained version of U-net demonstrates superior 

performance compared to the original ground truth trained model.  

 Following is the detail of the experiments. 

The U-net-orig model is trained using the original ground truth mask, generating both train and test data 

results. These results are represented by Dice Similarity Coefficient (DSC) measurements against both the 

Figure 3. Difference of original and modified masks 

(a) Test data (b) Result (c) Original ground truth 

Figure 4. Test Result 
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original mask (OM) and the mask modified by the active contour method (MM), as depicted in the first row 

of Table 1. Subsequently, the U-net-mod is trained using MM and provides results for both train and test data, 

also quantified through DSC measurements. The table demonstrates that the U-net model, when trained with 

the modified mask (U-net w/ MM), consistently outperforms the model trained with the original mask (U-net 

w/ OM) across all evaluated scenarios. This improvement is particularly evident in the test results. The Dice 

Similarity Coefficient (DSC) increases from 0.73 to 0.77 when comparing the performance on the original 

mask, and from 0.72 to 0.78 on the modified mask. These results indicate that training the U-net model with 

the modified mask, which is refined using the active contour method, leads to more precise and accurate 

segmentation of vessels in x-ray coronary artery angiography images. 

 

Table 1. Dice Similarity Coefficient (DSC) Result 

 Train vs OM Test vs OM Train vs MM Test vs MM 

U-net w/ OM 0.72 0.73 0.69 0.72 

U-net w/ MM 0.77 0.76 0.77 0.78 

 

4. Discussion 

Our study tackles the challenge of automatically refining ground truth sets specifically for thin and elongated 

objects such as vessels. However, the tables presented in our paper might be challenging to interpret. Therefore, 

providing an illustrative example (Fig. 5 and 6) with an explanation could significantly aid comprehension.  

For instance, consider the table where the first number in the first row and second column is 0.73. This 

represents the Dice Similarity Coefficient (DSC) calculated using the conventional U-net model trained on the 

original mask. Meanwhile, the second row and second column contains the DSC value computed between the 

original ground truth mask and the output obtained from a U-net model trained using the modified ground 

truth. Utilizing the active contour model-based algorithm, we modify the mask contours derived from the 

ground truth set. Our modification strategy ensures that these contours maintain fidelity to the image while 

staying closely aligned with the original shape. This approach limits substantial alterations from the original 

segmentation, allowing only minimal changes. 

Determining which ground truth mask version (original or modified) better aligns with the actual ground 

truth presents a challenge. Nevertheless, the noticeable and consistent improvement in the Dice Similarity 

Coefficient (DSC) displayed in the second column of Table 1 strongly indicates that the modified mask 

consistently yields superior results. This improvement persists regardless of whether the DSC is measured 

against the original or modified mask. Figures 5 and 6 present individual Dice Similarity Coefficient (DSC) 

results for both the train and test datasets. 

4. Conclusion 

This study presented an innovative approach to refining ground truth data for X-ray Coronary Artery 

Angiography (CAG) using an active contour model. Our method addresses the key challenges in manual 

annotation, particularly in accurately delineating blood vessels. This enhanced approach results in more precise 

and consistent ground truth data, crucial for training effective deep neural networks in medical image analysis.  

Experimentally, our method showed substantial improvements in vessel segmentation accuracy. Compared 
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to traditional manual annotations, the refined ground truth data achieved significantly higher Dice Similarity 

Coefficient (DSC) scores. This demonstrates the method's efficacy in producing more accurate and reliable 

datasets for neural network training. 

The application of our approach promises to significantly advance the field of medical diagnostics, ensuring 

higher accuracy in automated image analysis. This advancement could lead to more precise diagnoses and 

better treatment planning. The potential of this method extends beyond CAG, opening avenues for its 

application in other medical imaging modalities and integration into clinical workflows. Our findings set the 

stage for future research in applying computational techniques to enhance healthcare outcomes. 

 

Figure 5. DSC result for test set (147 train data). Blue is DSC result for the network 
using the proposed method (U-netmod). Red is from the network using original 
masks (U-netorig). Bottom bar graph is the subtraction (DSC using U-netmod − DSC 
using U-netorig). The average DSC difference is ≈ 0.08 
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Figure 6. DSC result for test set (230 test data). Blue is DSC result for the network 
using U-netmod. Red is from the network using U-netorig. Bottom bar graph is the 

subtraction (DSC U-netmod − DSC U-netorig). The average DSC difference is ≈ 

0.06 
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