Acknowledgement
This work was supported by the MSIT(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW) supervised by the IITP(Institute of Information & Communications Technology Planning & Evaluation) in 2023(2023-0-00055).
References
- C. Hobson et al., "Cost and Mortality Associated With Postoperative Acute Kidney Injury," Ann. Surg., vol. 261, no. 6, pp. 1207-1214, Jun. 2015, doi: 10.1097/SLA.0000000000000732.
- S. A. Silver, J. Long, Y. Zheng, and G. M. Chertow, "Cost of Acute Kidney Injury in Hospitalized Patients," J. Hosp. Med., vol. 12, no. 2, pp. 70-76, Feb. 2017, doi: 10.12788/jhm.2683.
- S. A. Silver and G. M. Chertow, "The Economic Consequences of Acute Kidney Injury," Nephron, vol. 137, no. 4, pp. 297-301, 2017, doi: 10.1159/000475607.
- S. G. Coca, B. Yusuf, M. G. Shlipak, A. X. Garg, and C. R. Parikh, "Long-term Risk of Mortality and Other Adverse Outcomes After Acute Kidney Injury: A Systematic Review and Meta-analysis," Am. J. Kidney Dis., vol. 53, no. 6, pp. 961-973, Jun. 2009, doi: 10.1053/j.ajkd.2008.11.034.
- R. Wald, "Chronic Dialysis and Death Among Survivors of Acute Kidney Injury Requiring Dialysis," JAMA, vol. 302, no. 11, p. 1179, Sep. 2009, doi: 10.1001/jama.2009.1322.
- "Section 2: AKI Definition," Kidney Int. Suppl., vol. 2, no. 1, pp. 19-36, Mar. 2012, doi: 10.1038/kisup.2011.32.
- Y. Wang, Y. Fang, J. Teng, and X. Ding, "Acute Kidney Injury Epidemiology: From Recognition to Intervention," in Contributions to Nephrology, vol. 187, X. Ding and C. Ronco, Eds., S. Karger AG, 2016, pp. 1-8. doi: 10.1159/000443008.
- H. Sookyung, N. Cheryl, "Comorbidity Analysis on Big Data", International Journal of Advanced Culture Technology, vol. 7 no. 2, pp. 13-18, Jun. 2019, doi: 10.17703/IJACT.2019.7.2.13.
- J. Case, S. Khan, R. Khalid, and A. Khan, "Epidemiology of Acute Kidney Injury in the Intensive Care Unit," Crit. Care Res. Pract., vol. 2013, pp. 1-9, 2013, doi: 10.1155/2013/479730.
- P. Pickkers et al., "Acute kidney injury in the critically ill: an updated review on pathophysiology and management," Intensive Care Med., vol. 47, no. 8, pp. 835-850, Aug. 2021, doi: 10.1007/s00134-021-06454-7.
- K. Shawwa, E. Ghosh, S. Lanius, E. Schwager, L. Eshelman, and K. B. Kashani, "Predicting acute kidney injury in critically ill patients using comorbid conditions utilizing machine learning," Clin. Kidney J., vol. 14, no. 5, pp. 1428-1435, Apr. 2021, doi: 10.1093/ckj/sfaa145.
- Y. Li, L. Yao, C. Mao, A. Srivastava, X. Jiang, and Y. Luo, "Early Prediction of Acute Kidney Injury in Critical Care Setting Using Clinical Notes," in 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain: IEEE, Dec. 2018, pp. 683-686. doi: 10.1109/BIBM.2018.8621574.
- L. P. Zimmerman et al., "Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements," BMC Med. Inform. Decis. Mak., vol. 19, no. S1, p. 16, Jan. 2019, doi: 10.1186/s12911-019-0733-z.
- X. Zhang, S. Chen, K. Lai, Z. Chen, J. Wan, and Y. Xu, "Machine learning for the prediction of acute kidney injury in critical care patients with acute cerebrovascular disease," Ren. Fail., vol. 44, no. 1, pp. 43-53, Dec. 2022, doi: 10.1080/0886022X.2022.2036619.
- Q. Liang, Y. Xu, Y. Zhou, X. Chen, J. Chen, and M. Huang, "Severe acute kidney injury predicting model based on transcontinental databases: a single-centre prospective study," BMJ Open, vol. 12, no. 3, p. e054092, Mar. 2022, doi: 10.1136/bmjopen-2021-054092.
- M. Sun et al., "Early Prediction of Acute Kidney Injury in Critical Care Setting Using Clinical Notes and Structured Multivariate Physiological Measurements," Stud. Health Technol. Inform., vol. 264, pp. 368-372, Aug. 2019, doi: 10.3233/SHTI190245.
- F. Alfieri et al., "A deep-learning model to continuously predict severe acute kidney injury based on urine output changes in critically ill patients," J. Nephrol., vol. 34, no. 6, pp. 1875-1886, Dec. 2021, doi: 10.1007/s40620-021-01046-6.
- C. Wei, L. Zhang, Y. Feng, A. Ma, and Y. Kang, "Machine learning model for predicting acute kidney injury progression in critically ill patients," BMC Med. Inform. Decis. Mak., vol. 22, no. 1, p. 17, Dec. 2022, doi: 10.1186/s12911-021-01740-2.
- N. Sato, E. Uchino, R. Kojima, S. Hiragi, M. Yanagita, and Y. Okuno, "Prediction and visualization of acute kidney injury in intensive care unit using one-dimensional convolutional neural networks based on routinely collected data," Comput. Methods Programs Biomed., vol. 206, p. 106129, Jul. 2021, doi: 10.1016/j.cmpb.2021.106129.
- S. Le et al., "Convolutional Neural Network Model for Intensive Care Unit Acute Kidney Injury Prediction," Kidney Int. Rep., vol. 6, no. 5, pp. 1289-1298, May 2021, doi: 10.1016/j.ekir.2021.02.031.
- N. Tomasev et al., "A clinically applicable approach to continuous prediction of future acute kidney injury," Nature, vol. 572, no. 7767, pp. 116-119, Aug. 2019, doi: 10.1038/s41586-019-1390-1.
- G. T. M. Sales and R. D. Foresto, "Drug-induced nephrotoxicity," Rev. Assoc. Medica Bras., vol. 66, no. suppl 1, pp. s82-s90, 2020, doi: 10.1590/1806-9282.66.s1.82.
- M. A. Perazella, "Drug use and nephrotoxicity in the intensive care unit," Kidney Int., vol. 81, no. 12, pp. 1172-1178, Jun. 2012, doi: 10.1038/ki.2010.475.
- H. Ozturk, A. Ozgur, and E. Ozkirimli, "DeepDTA: deep drug-target binding affinity prediction," Bioinformatics, vol. 34, no. 17, pp. i821-i829, Sep. 2018, doi: 10.1093/bioinformatics/bty593.
- K. Yang et al., "Analyzing Learned Molecular Representations for Property Prediction," J. Chem. Inf. Model., vol. 59, no. 8, pp. 3370-3388, Aug. 2019, doi: 10.1021/acs.jcim.9b00237.
- D. Rogers and M. Hahn, "Extended-Connectivity Fingerprints," J. Chem. Inf. Model., vol. 50, no. 5, pp. 742-754, May 2010, doi: 10.1021/ci100050t.
- X. Yu, Y. Ji, M. Huang, and Z. Feng, "Machine learning for acute kidney injury: Changing the traditional disease prediction mode," Front. Med., vol. 10, p. 1050255, Feb. 2023, doi: 10.3389/fmed.2023.1050255.
- P. J. Thoral et al., "Sharing ICU Patient Data Responsibly Under the Society of Critical Care Medicine/European Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam University Medical Centers Database (AmsterdamUMCdb) Example*," Crit. Care Med., vol. 49, no. 6, pp. e563-e577, Jun. 2021, doi: 10.1097/CCM.0000000000004916.
- A. E. W. Johnson et al., "MIMIC-III, a freely accessible critical care database," Sci. Data, vol. 3, no. 1, p. 160035, May 2016, doi: 10.1038/sdata.2016.35.
- S. V. Buuren and K. Groothuis-Oudshoorn, "mice : Multivariate Imputation by Chained Equations in R," J. Stat. Softw., vol. 45, no. 3, 2011, doi: 10.18637/jss.v045.i03.
- B. Bardak and M. Tan, "Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions." arXiv, Oct. 17, 2021. Accessed: Nov. 14, 2023. [Online]. Available: http://arxiv.org/abs/2110.08918
- D. Weininger, "SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules," J. Chem. Inf. Comput. Sci., vol. 28, no. 1, pp. 31-36, Feb. 1988, doi: 10.1021/ci00057a005.
- E. E. Bolton, Y. Wang, P. A. Thiessen, and S. H. Bryant, "PubChem: Integrated Platform of Small Molecules and Biological Activities," in Annual Reports in Computational Chemistry, vol. 4, Elsevier, 2008, pp. 217-241. doi: 10.1016/S1574-1400(08)00012-1.
- D. Duvenaud et al., "Convolutional Networks on Graphs for Learning Molecular Fingerprints." arXiv, Nov. 03, 2015. Accessed: Nov. 16, 2023. [Online]. Available: http://arxiv.org/abs/1509.09292
- L. Breiman, "Random Forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001, doi: 10.1023/A:1010933404324.
- T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System," in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA: ACM, Aug. 2016, pp. 785-794. doi: 10.1145/2939672.2939785.
- G. Ke et al., "LightGBM: a highly efficient gradient boosting decision tree," Adv. Neural Inf. Process. Syst., vol. 30, pp. 3146-3154, 2017.
- L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, "CatBoost: unbiased boosting with categorical features," 2017, doi: 10.48550/ARXIV.1706.09516.