
J. lnf. Commun. Converg. Eng. 21(4): 268-280, Dec. 2023 Regular paper
Microservice Identification by Partitioning Monolithic Web
Applications Based on Use-Cases

Si-Hyun Kim1 , Daeil Jung1, Norhayati Mohd Ali2 , Abu Bakar Md Sultan2 , and Jaewon Oh1*

1School of Computer Science and Information Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
2Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia

Abstract

Several companies have migrated their existing monolithic web applications to microservice architectures. Consequently,

research on the identification of microservices from monolithic web applications has been conducted. Meanwhile, the use-case

model plays a crucial role in outlining the system’s functionalities at a high level of abstraction, and studies have been conducted

to identify microservices by utilizing this model. However, previous studies on microservice identification utilizing use-cases

did not consider the components executed in the presentation layer. Unlike existing approaches, this paper proposes a technique

that considers all three layers of web applications (presentation, business logic, and data access layers). Initially, the components

used in the three layers of a web application are extracted by executing all the scenarios that constitute its use-cases. Thereafter,

the usage rate of each component is determined for each use-case and the component is allocated to the use-case with the highest

rate. Then, each use-case is realized as a microservice. To verify the proposed approach, microservice identification is

performed using open-source web applications.

Index Terms: Monolithic applications, Microservices, Microservice identification, Use-cases, Web application reengineering

I. INTRODUCTION

These days, there has been a continuous increase in the

amount of data that needs to be processed by web applica-

tions (web apps), and the requirements for web apps are

becoming more and more complex [1]. Under these circum-

stances, the modularization of web apps makes it easier to

maintain increasingly complex web apps, and it can improve

their performance [2]. Hence, various approaches, such as a

method to partition web apps into layers [3] and a method to

transform web apps into service-oriented architectures [4],

have been proposed as methods for the modularization of

web apps [4-19]. In addition, to achieve modularization, sev-

eral companies (including Netflix, Amazon, and eBay) have

recently migrated their monolithic web apps to microservice

architectures [5]. In this context, the term microservice

architecture refers to an architecture composed of microser-

vices, which are small apps that are independently devel-

oped, released, and expanded [6]. The transformation of a

monolithic web app to a microservice architecture is a chal-

lenging task [8] since it requires the identification of reus-

able features from the monolithic web app [4].

Hence, to alleviate the difficulties in the transformation

process, research has focused on methods to automatically

identify microservices within monolithic web apps [9-16,18,

19]. However, in many prior studies, components such as

database tables and views in the data access and presentation

layers of web apps were overlooked in the identification of

microservices. As a result, existing techniques were not suf-

ficient to ensure that each of the identified microservices can

268

Received 19 September 2023, Revised 14 November 2023, Accepted 30 November 2023
*Corresponding Author Jaewon Oh (E-mail: jwoh@catholic.ac.kr)
School of Computer Science and Information Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea

https://doi.org/10.56977/jicce.2023.21.4.268 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

https://orcid.org/0009-0006-9751-2660
https://orcid.org/0000-0002-9739-0492
https://orcid.org/0000-0002-8962-0112
https://orcid.org/0009-0008-3512-7657

Microservice Identification by Partitioning Monolithic Web Applications Based on Use-Cases
properly perform its function as a web app.

To address these problems, this paper proposes a method

for transforming monolithic web apps into microservice

architectures by achieving the following three research

objectives.

Microservice identification utilizing the use-case model:

To transform a monolithic web app into a microservice

architecture, it is essential to determine the parts of the web

app that are converted into microservices. The main goal of

this transformation is to ensure that each identified microser-

vice provides a single function. To accomplish this, we uti-

lize a use-case model outlining the functional requirements

of a system. In other words, our approach extracts a use-case

model from a monolithic web app and maps each use-case to

a microservice.

Identification of microservices composed of all three

web app layers: A web app generally comprises three lay-

ers: presentation, business logic, and data access [20]. Simi-

larly, when constructing a web app based on the micro-

service architecture it is essential to ensure that each micros-

ervice can function as a small independent web app [6].

Consequently, each microservice must encompass all compo-

nents running in these three layers for complete web app

functionality. Considering this aspect of microservices in the

identification process, this paper introduces a microservice

identification technique that, through dynamic analysis, con-

siders all components executed in the three layers of web

apps. It ensures the inclusion of these components in the

identified microservices. It is worth noting that, unlike prior

studies utilizing use-cases for microservice identification,

this paper accounts for components executed in the presenta-

tion layer.

Evaluation: To assess the applicability and effectiveness

of the proposed technique, it is essential to compare it with

various existing microservice identification techniques. The

comparison between our approach and existing methods is

made using five types of open-source web apps. Addition-

ally, an evaluation is conducted using an accuracy metric

widely used in machine learning.

This paper makes the following contributions by accom-

plishing the aforementioned research objectives. First, it

decomposes a monolithic web app based on its functions by

utilizing use-cases for microservice identification. Second,

all three layers of the web apps are considered. Third, this

paper demonstrates that our approach outperforms existing

methods.

The remainder of this paper is organized as follows. Sec-

tion II describes related studies. Section III presents a

method for microservice identification. In Section IV, the

effectiveness of our approach is evaluated. Finally, Section V

provides conclusions and directions for future research.

II. MOTIVATION AND RELATED WORK

According to a related study [7], microservice identifica-

tion methods or Service Identification Approaches (SIAs)

can be divided into six types: wrapping, genetic algorithms,

Formal Concept Analysis (FCA), clustering, custom heuris-

tics, and general guidelines. In particular, clustering and cus-

tom heuristics have been the preferred approaches in recent

studies [7].

In SIAs, microservices can be identified using various

input data. In [7], the input data were classified into three

categories: executable models (source code, databases, etc.),

non-executable models (execution traces, use-cases, etc.),

and domain artifacts (ontologies, documents, etc.).

Our approach uses classes, tables, and views as executable

models, and execution traces and use-cases as non-execut-

able models. Consequently, it is necessary to review studies

that utilize these two types of models.

First, studies that identify microservices using use-cases

include the following. Dmitry et al. [12] introduced a method

using use-cases to partition a monolithic web app into compo-

nents with a single function. This technique is similar to ours,

as it identifies microservices by dividing web apps based on

use-cases. However, their method lacked evaluation using real

web apps, and it did not account for tables and views.

In a study by Bajaj et al. [13], relationships between use-

cases and those between use-cases and tables were extracted.

The relationships were then analyzed to identify microser-

vices. However, as this technique focuses on microservice

identification at the use-case level, it does not take into

account classes and views.

In the approach presented by Tyszberowicz et al. [15], the

functional requirements of the system were analyzed using

use-cases. Based on this analysis, they proposed a method

for identifying microservices by partitioning web apps by

function. This method is similar to our approach in that it

considers tables in the process of identifying microservices.

However, they did not consider views such as JSP.

Furthermore, Kalia et al. [18] proposed a method to

extract execution traces based on use-cases and subsequently

analyze the traces to depict the call relationships between

classes in a graph. This study is similar to our approach in

that class information is obtained from execution traces.

However, their method is constrained since table and view

information cannot be obtained.

Second, it is necessary to review studies that consider not

only classes but also tables and views. Some previous stud-

ies [9-11,21-23] considered both classes and tables to iden-

tify microservices.

Levcovitz et al. [9] introduced a method to represent com-

ponents including database tables and business logic, and
269 http://jicce.org

J. lnf. Commun. Converg. Eng. 21(4): 268-280, Dec. 2023
call relationships between components, in the form of a

graph through static analysis of monolithic web apps. A lim-

itation of their approach, in contrast to ours, is the inability

to identify dynamically generated tables due to its reliance

on static analysis. Moreover, it does not consider cases

where multiple microservices share tables.

Kamimura et al. [10] proposed a method to represent

classes and tables as nodes and call relationships between

nodes as edges through static analysis of the source code of

web apps. This technique considers only web apps that use

Object Relational Mapping (ORM1) in the process of identi-

fying tables; therefore, it can not be used to identify tables in

the case of apps not using ORM.

Mazlami et al. [11] presented a method for utilizing the

information from version control systems to identify micros-

ervices. Their approach generates a graph where classes and

tables are nodes, and the relationships between nodes are

edges. The graph is then clustered to identify microservices.

At that time, edges are generated based on the change his-

tory of classes obtained from the version control system,

from information on contributors who changed the classes,

or from information on source code similarity between

classes obtained by static analysis of the source code. How-

ever, this method is limited to apps using ORM, rendering it

unable to identify tables in apps without ORM.

Del Grosso et al. [21] proposed a technique to identify

microservices by dynamically extracting SQL queries to

obtain database tables and fields and clustering the queries

with the obtained information. This method is similar to ours

in that it uses dynamic analysis to extract SQL queries. How-

ever, because their approach identifies microservices using

only SQL queries, it does not consider classes and views.

Recent studies [22,23] have expanded their focus beyond

classes to include tables and views. These studies highlight

that certain components in web apps are overlooked by

existing microservice identification methods. Thus, those

studies proposed the following process to solve the problem.

In the first step, any existing microservice identification

method is executed. In the subsequent step, the components

not considered by the existing method are classified as

microservices by reusing the identification results of the pre-

vious step. The tables and views are classified in the subse-

quent step. While these studies directly classify all

components into microservices, these studies reuse the

results of other microservice identification techniques for

this classification. In addition, these studies statically ana-

lyze the source code, unlike this paper.

III. MICROSERVICE IDENTIFICATION VIA

USE-CASES

This paper introduces a method for transforming a mono-

lithic web app into a microservice architecture where each

identified microservice functions as an independent web app

with its unique purpose. A use-case represents a function

provided by a system at a high level of abstraction from the

user’s perspective [12,13]. Therefore, this paper proposes a

microservice identification approach that realizes each use-

case as a microservice.

As depicted in Fig. 1, the proposed approach consists of

three steps: identifying use-cases and their scenarios, extract-

ing components based on these scenarios, and clustering the

components according to the use-cases. In this figure, the

system consists of two use-cases (Ua and Ub). Each use-case

comprises two scenarios. By executing each scenario, its

components are identified in the second step. Each compo-

nent is allocated to an appropriate use-case, and each use-

case is realized as a microservice in the final step.

A. Identification of Use-cases and Scenarios

A use-case is a set of scenarios, each of which is a series

of steps through which a web app is used. Consequently, the

identification of use-cases also requires the identification of

their scenarios. This paper proposes the following method1) https://docs.spring.io/spring-framework/docs/2.5.5/reference/orm.html

Fig. 1. Microservice identification approach.
https://doi.org/10.56977/jicce.2023.21.4.268 270

Microservice Identification by Partitioning Monolithic Web Applications Based on Use-Cases
for identifying use-cases and their scenarios.

First, use-cases and their scenarios can be statically identi-

fied by referring to the web app documentation. Documents

for web apps can be found in various locations. For example,

for open-source apps publicly available in an open-source

repository (e.g., GitHub2), a file with a description of the

web app (e.g., HELP.html and README.md) is sometimes

provided. In such cases, use-cases and their scenarios can be

identified through static analysis of the file.

Fig. 2 shows the process of extracting use-cases by refer-

ring to the HELP.html file in the open-source web app called

JPetStore63. The use-case called Account Management can

be statically identified by referring to the functions called

Signing Up and Signing In described in this document.

Second, use-cases and scenarios can be dynamically identi-

fied through the execution of a web app. Analyzing documents

for the extraction of use-cases and scenarios may encounter lim-

itations due to insufficient information in the documents or the

absence of relevant documents. In such cases, use-cases and

scenarios can be identified by executing a web app.

For example, in the scenario identification step of Fig. 2,

the Failed Login scenario is not specified in the HELP.html

file, but can be dynamically identified by executing the web

app. On the other hand, the Successful Login scenario is stat-

ically identified in the file.

B. Extracting Components from Scenarios

A scenario is one of the operational flows within a web

app. Thus, an execution trace can be extracted for each sce-

nario. In this context, the execution trace refers to a list of

components used during scenario execution. The Aspect Ori-

ented Programming (AOP) technique [24,25] can be used to

extract such execution traces. As shown in Fig. 3, when

employing AOP in Java web app, execution traces can be

generated by detecting the execution of the classes and

methods constituting the web app. In this figure, the web app

consists of components (c1-c6) developed by developers and

existing components (lib1-lib4) provided in the framework.

Scenario sa1 is used to identify the components developed by

developers among those running in this scenario. In this fig-

ure, c1, c3, c4, and c5 are identified to constitute the execu-

tion trace using the aspects of the AOP.

1) Extracting Execution Traces with Aspectj

AspectJ [24] is one of the technologies supporting AOP in

Java apps and is a library that can be used to extract execu-

tion traces. As shown in Fig. 4, the execution traces can be

extracted by adding to a Java web app the special construct

called an aspect provided by AspectJ. This aspect can con-

tain a pointcut annotation that is used to specify the classes

and methods to be recorded in the execution traces. Fig. 4

shows part of the aspect code used to extract the execution

traces of JPetStore6. Fig. 5 shows some of the extracted exe-

cution traces from running the aspect code. To trace the exe-

cution of the classes written by the developers, they are

Fig. 2. The extraction of the use-cases and their scenarios of JPetStore6.

Fig. 3. Extracting execution traces by utilizing AOP.

2) http://github.com/
3) https://github.com/mybatis/jpetstore-6 Fig. 5. The execution trace of the successful login scenario for JPetStore6.

Fig. 4. An AspectJ pointcut for JPetStore6.
271 http://jicce.org

J. lnf. Commun. Converg. Eng. 21(4): 268-280, Dec. 2023
specified within the pointcut construct in lines 1-4 of Fig. 4.

Only the classes written by the developers are specified

because the execution records of the components not written

by them are not required during the identification of micros-

ervices.

When executing a Successful Login scenario using the

aspect in Fig. 4, classes like AccountService and Account-

Mapper can be extracted, as depicted in lines 1-2 of Fig. 5.

Lines 3-7 of Fig. 5 display the tables and views detected. To

detect tables and views, it is necessary to perform an addi-

tional step that is explained in detail below.

2) Identification of Tables

This paper considers database tables in the data access

layer of web apps. For this purpose, it is essential to identify

tables accessed during the execution of the scenarios.

In general, we can obtain information on tables by analyz-

ing SQL queries. The methods used to generate SQL queries

in web apps can be divided into three types. First, it is possi-

ble to completely generate SQL queries at compile time if

the developer directly writes them in the source code. Sec-

ond, while an app is executed, SQL queries can be dynami-

cally generated by utilizing user input. Third, SQL queries

can be statically or dynamically generated using database

frameworks (e.g., MyBatis4 and Spring Data JPA5).

Regarding the above methods, approaches to extracting

SQL queries can be divided into two types. The first method

uses static analysis. In a study by Meurice et al. [26], static

analysis of source code was performed to identify a method

of a class that accesses database tables. The SQL query,

treated as a value in the method argument, is then statically

extracted. There is a limitation in the technique proposed by

Meurice et al., which assumes the source code includes static

information on tables; therefore, it does not consider cases in

which tables are dynamically generated.

The second type of approach uses dynamic analysis. In a

study by Cleve et al. [27], the execution of a method of a

class used to access database tables was identified, and the

argument value of this method was dynamically extracted to

obtain a SQL query. If this approach is used, cases in which

tables are generated dynamically can be considered.

Our approach is a dynamic analysis technique. Neverthe-

less, it is different from the study by Cleve et al. in that our

approach considers cases in which SQL queries are gener-

ated by using database frameworks.

According to one previous study [28], most Java database

frameworks are implemented based on the Java Database

Connectivity (JDBC)6 Application Programming Interface

(API); therefore, access to tables can be discerned by tracing

the execution of the JDBC API. In our approach, AspectJ is

used to detect the execution of classes. Similarly, to detect

access to tables, the JDBC API with a SQL query as its

argument is specified within the pointcut of the aspect class.

Subsequently, when the execution of this API is detected

dynamically, the SQL query used as the argument value of

this API can be extracted. These JDBC methods can be

found on the website for Kieker7, one of the dynamic analy-

sis tools.

Line 2 in Fig. 5 shows the class AccountMapper, which

calls the execute() method of the JDBC API. The argument

value of this method includes the following query:

select ... from ACCOUNT, PROFILE, SIGNON, BANNER-

DATA where ...

Our approach uses line 6 of Fig. 4 to detect the execute()

method. The argument of this method is subsequently

parsed, and the tables mentioned above are detected, as illus-

trated in lines 3-6 of Fig. 5. Parsing tasks can be accom-

plished using tools such as General SQL Parser (GSP)8.

3) Identification of Views

Web apps generally employ views to display the outcomes

of business logic. In Java web apps, views can be written

using two methods. The first is the standard method of utiliz-

ing JSP and HTML. The second uses presentation frame-

works (such as Stripes9).

Therefore, to identify views, it is necessary to use a tech-

nique that is suitable for the presentation method applied to

web apps. In this paper, the following two approaches

described below are used to identify views.

First, when employing JSP and HTML in a standard Java

web app, views are identified as follows. The JSP is exe-

cuted after being converted into a servlet class by the web

server. Since the final JSP form is a servlet class, the JSP

can be identified if the final servlet class is specified within

the pointcut of the aspect class, as shown in line 5 of Fig. 4.

HTML can not be identified using AspectJ because it is

not a Java class. In this case, the interceptor pattern [29] can

be used to detect HTML. In other words, this pattern allows

the interceptor written as a Java class to run before HTML

page h is accessed. Additionally, the interceptor obtains

information about h and records it in an execution trace. This

interceptor pattern can be implemented using the filter and

wrapper functions [30] provided by standard Java web tech-

nology.

Second, in web apps that employ presentation frameworks

such as FreeMarker10, a distinct class method is used to exe-

cute JSP and HTML. By specifying this particular method

within the AspectJ pointcut, views such as JSP and HTML

4) https://mybatis.org/mybatis-3/
5) https://spring.io/projects/spring-data-jpa
6) https://www.oracle.com/java/technologies/javase/javase-tech-database.html

7) https://github.com/kieker-monitoring/kieker
8) https://www.sqlparser.com
9) https://github.com/StripesFramework
10) https://freemarker.apache.org
https://doi.org/10.56977/jicce.2023.21.4.268 272

Microservice Identification by Partitioning Monolithic Web Applications Based on Use-Cases
can be identified. For instance, in FreeMarker, the getTemplate()

method of the Configuration class holds information about

the HTML page to be used as a view. Hence, detecting

getTemplate() and analyzing its method argument can identify

an HTML page.

In JPetStore6, which uses Stripes as its presentation frame-

work, the constructor of the ForwardResolution class con-

tains information on the view in its argument. Thus, line 7 in

Fig. 5 shows that the main view is identified by detecting the

value of the constructor's argument.

c. Component Clustering Based on Use-cases

In this paper, each use-case is realized as a microservice.

Specifically, the clustering of a web app’s components is

conducted based on its use-cases, and a set of components

belonging to each cluster (i.e., a use-case) is implemented as

a single microservice. In this phase, to identify the compo-

nents that belong to microservices, this paper uses informa-

tion obtained in Section Ⅲ.A and Ⅲ.B, defined as follows.

Definition 1: The information used for microservice iden-

tification is as follows.

- U = {u1, u2, …, un}: a set of use-cases for a web app

- Si = {si1, si2, …, sim}: a set of scenarios for use-case ui

- C = {c1, c2, …, ck}: a set of components in a web app

- Cij ⊂ C: Cij denotes a set of components used in scenario

sij. In other words, it is a set of views, tables, and classes

accessed when sij is executed.

This paper assumes that a microservice should serve a sin-

gle function; hence, it is considered an appropriate approach

to separate the components based on use-cases. From this

perspective, the method for allocating components to use-

cases is shown in Fig. 6.

This algorithm computes the usage rate of each component

for each use-case and allocates the component to the use-case

with the highest usage rate. The usage rate of a component for

a use-case is determined by the ratio of scenarios using the

component within the use-case (see line 5 in Fig. 6). For

example, for a specific use-case, if a particular component is

used in all scenarios belonging to the use-case, the usage rate

is one and if the component is used in half of the scenarios,

the usage rate is 0.5. A high usage rate of a component for a

use-case indicates that the component is a key component of

the use-case. Thus, the usage rate serves as an appropriate cri-

terion for allocating a component to the specific use-case.

If two or more use-cases have the same usage rate (lines

11-16), the number of times the component is used is calcu-

lated, and the component is allocated to the use-case with the

most uses. The number of uses of a component for a use-

case is the number of scenarios in which the component is

used from among all the scenarios constituting the use-case.

If the number of uses is primarily considered, rather than

the usage rate, even though a component is used in all the

scenarios of use-case u, it may be allocated to another use-

case if u consists of fewer scenarios. Therefore, the usage

rate is regarded as the primary criterion before considering

the number of uses. The method for computing the number

of uses is outlined in the countScenarios function in lines

18-25. In this regard, when determining the number of uses,

the frequency of a component’s execution in a particular sce-

nario is not considered. In other words, for a scenario, if a

component is executed once or more, the value for the num-

ber of uses is incremented by one only, and if it is not exe-

cuted at all, the value is not increased (lines 21-23).

Fig. 7 illustrates a segment of the microservice identifica-

tion process for JPetStore6. To determine the appropriate

use-case for allocating the AccountActionBean component

should be allocated to, the AccountActionBean component is

input for the proposed clustering algorithm. The results for

lines 3-6 of the algorithm are shown in Fig. 7(a). For the

AccountActionBean component, the use-cases with the high-

est usage rate are Order Management and Account Manage-

ment. However, the AccountActionBean component needs to

be allocated to a single use-case; therefore, the numbers of

uses (num) are compared. As shown in Fig. 7(a), the number

Fig. 6. Clustering of components based on use-cases.
273 http://jicce.org

J. lnf. Commun. Converg. Eng. 21(4): 268-280, Dec. 2023
of uses for AccountActionBean is 7 for Order Management

and 9 for Account Management; consequently, this compo-

nent is allocated to Account Management. In addition, the

CatalogActionBean component is used in Catalog Manage-

ment and Account Management use-cases, as shown in Fig.

7(b). This component is allocated to Catalog Management,

which has the highest usage rate among these use-cases.

IV. EVALUATION

This section describes experiments conducted to evaluate

the proposed approach. It addresses the following research

questions.

RQ1: Is our approach more effective than existing meth-

ods?

RQ2: Are tables and views appropriately allocated to

microservices?

a. Subject Apps

The performance of the proposed approach was assessed

using the open-source web apps listed in Table 1. These apps

were chosen for several reasons. First, they are publicly avail-

able in well-known open-source repositories, and JPetStore6

and PetClinic have been used in previous studies [10,11,14,

18]. Second, they were selected to evaluate the effectiveness

of our approach across different types of web apps (e.g., JPet-

Store2, JPetStore6, PetClinic) using various frameworks as

well as standard Java web apps (e.g., ShoppingApp). Third,

because PetClinic is an open-source web app with a microser-

vice version currently available, it enables an objective evalu-

ation of the results of microservice identification.

B. Baseline Approaches

In this paper, we evaluate the effectiveness of our

approach by comparing it to multiple baseline approaches.

The approaches compared with our proposed technique are

described below.

MEM: This technique introduced by Mazlami et al. [11],

operates by taking a monolithic web app uploaded to a ver-

sion control system, such as Git11, as input. The resulting

output is a graph representing classes as nodes and illustrat-

ing relationships between nodes as edges. In the graph,

edges are generated based on the change history of classes

obtained from the version control system, information on the

contributors who modified the classes, or information on the

source code similarity between classes that can be obtained

by static analysis. Following the generation of this graph,

Kruskal’s algorithm [31] is employed to derive a Minimum

Spanning Tree (MST) [32] for microservice identification. In

the experiment described in this paper, edges were generated

using information on source code similarity.

Bunch: Introduced by Mitchell et al. [33], this technique

initiates by extracting call relationships between components

at the source code level through static analysis of a web app.

Subsequently, a Module Dependency Graph (MDG) is gener-

ated based on the results. This MDG represents components

as nodes and represents the relationships between compo-

nents as edges. Then, using the MDG as input, clustering is

performed using the Hill-Climbing algorithm [34] to identify

microservices.

Mono2Micro: Introduced by Kalia et al. [18], this tech-

nique initiates by extracting execution traces based on use-

cases. These traces are analyzed to represent call relation-

ships between classes in the form of a graph. Clustering is

then executed using a hierarchical clustering algorithm [35]

for microservice identification.

C. Evaluation Metrics

Our task in this paper is to cluster multiple components of

a monolithic web app into two or more microservices. This

problem can be regarded as a multiclass classification prob-

lem for classifying each component as one of multiple

microservices.

To assess the quality of the identified microservices in

web apps, it is crucial to establish the ground truth. The per-

formance of identification algorithms is evaluated by com-

paring their results against the ground truth. The method

used to generate the ground truth is detailed in the following

section. In terms of evaluation metrics, this paper utilizes the

accuracy metric [36], which is commonly used to evaluate

the performance of multiclass classification algorithms.

Fig. 7. Application of the microservice identification method to JPetStore6.

11) https://git-scm.com/
https://doi.org/10.56977/jicce.2023.21.4.268 274

Microservice Identification by Partitioning Monolithic Web Applications Based on Use-Cases
The ground truth in this study resulted from the identifica-

tion of microservices based on their functions through the

expertise of web app professionals, utilizing both static and

dynamic analyses of monolithic web apps. The process of

generating ground truth is as follows. Web app experts are

divided into two groups. The first group identifies microser-

vices. The second group verifies the identified microser-

vices. These two groups repeat the above steps until they

agree on the result of the microservice identification task.

In this paper, ground truth is represented as G: C→M,

where C is the set of components of a web app as defined in

Section Ⅲ.C. The set of microservices is defined as M =

{m1, m2, …, ml}, where l indicates the number of microser-

vices in a web app, and mi denotes the ith microservice. The

result from the application of a microservice identification

technique is represented as R: C→M. Based on the defini-

tions above, the TPi (True Positive) is defined below.

- TPi: the number of components classified as mi in R from

among components classified as mi in G

Finally, the accuracy [36] for the entire microservice app

is defined as follows:

Accuracy: the ratio of correctly classified components in R

according to G with respect to the total components

Accuracy = (1)

D. RQ1: Is Our Approach more Effective than
Existing Approaches?

It is necessary to evaluate the effectiveness of the proposed

approach through a comparison with existing approaches.

Therefore, the evaluation was conducted as follows:

1) Evaluation Method

Microservice identification was conducted using four

types of techniques: the proposed approach, MEM, Bunch,

and Mono2Micro. Only the proposed approach considers

tables and views; the other three do not. However, to com-

pare the four approaches more appropriately, all the compo-

nents unclassified by these algorithms were randomly

allocated to microservices. Following this adjustment, the

accuracy of the identification result from each method was

measured to evaluate the quality of the identification

method.

2) Results and Analysis

Table 2 presents the results. Below the name of each web

app in this table, the total numbers of components, classes,

views, and tables classified as microservices are listed. How-

ever, these numbers differ from those listed in Table 1. This

difference arises due to the inability to categorize some com-

ponents into specific microservices. These components have

the following characteristics. These components are the basic

components that each microservice should have. For exam-

ple, the JsonDecoder class in DayTrader can not be classi-

fied as a specific microservice. This class is responsible for

parsing JSON strings and constructing the corresponding

objects in a web app. In this case, parsing is a fundamental

function essential for each microservice. Consequently, com-

ponents with this characteristic can not be classified as spe-

cific microservices.

The Hit and the Accuracy columns in Table 2 present four

values each, representing perspectives on total components,

i 1=

l
TP

i

C

Table 1. Subject applications

Name

The number of components:

Class (LOC), View (Type),

Table

Technologies used:

Application framework, Presentation

framework, Database technology

Number of

use-cases

Number of

scenarios
Description

JPetStore2a) 48(1602), 21(JSP)&2(HTML), 13 Springb), Spring Web MVCc), iBatisd) 4 30 Shopping mall for pet animals

JPetStore6 24(1406), 20(JSP)&2(HTML), 13 Spring, Stripes, MyBatis 4 28 Shopping mall for pet animals

PetClinice) 25(782), 12(HTML), 7 SpringBootf), Thymeleafg), JPAh) 3 21 Animal hospital management system

ShoppingAppi) 22(1353), 13(JSP), 4 N/A, N/A, JDBC 4 21 Fashion shopping mall

DayTraderj)
108(10376), 24(JSP)&19(HTML)

&15(XHTML), 6
N/A, N/A, JPA 5 46 Stock trading system

a)https://github.com/KimJongSung/jPetStore
b)https://spring.io/projects/spring-framework
c)https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html
d)https://ibatis.apache.org
e)https://github.com/spring-projects/spring-petclinic
f)https://spring.io/projects/spring-boot
g)https://www.thymeleaf.org
h)https://docs.oracle.com/javaee/7/tutorial/partpersist.htm
i)https://github.com/manhduydl/Shopping-web-Jsp-Servlet
j)https://github.com/WASdev/sample.daytrader7
275 http://jicce.org

J. lnf. Commun. Converg. Eng. 21(4): 268-280, Dec. 2023
classes, views, and tables. For example, for JPetStore2, the

Mono2Micro results can be interpreted as follows: First, the

accuracy from the total component perspective (Accuracyto-

tal) is calculated as 0.66, indicating that 48 out of 73 compo-

nents are correctly classified based on the ground truth.

Second, accuracy from the class component perspective

(Accuracyclass) is 0.86, denoting that 38 out of 44 class com-

ponents are correctly classified. Third, accuracy from the

view component perspective (Accuracyview) is 0.19, showing

that 3 out of 16 view components are correctly classified.

Finally, accuracy from the table component perspective

(Accuracytable) is 0.54, signifying that 7 out of 13 table com-

ponents are correctly classified.

Because the existing approaches consider classes only, the

performance of the proposed and existing approaches are

first compared from the class component perspective. The

Accuracyclass of the proposed approach is 27% higher on

average than that of the other approaches. Specifically,

across all five web apps, the Accuracyclass of the proposed

approach consistently outperformed that of the MEM. More-

over, in four web apps (excluding JPetStore2), the Accuracy-

class of the proposed approach surpassed that of both the

Bunch and the Mono2Micro. The reason the performance of

the proposed approach is slightly lower than that of the

Mono2Micro and the Bunch in JPetStore2 can be explained

as follows. Web apps typically have domain objects that are

used to store and manage the persistent data needed for spe-

cific domains. Consequently, the domain objects of a partic-

ular microservice are often used by other microservices

requiring domain information. In other words, a domain

object can be used more by microservices other than those

creating and maintaining it. In such cases, the proposed

approach has the limitation of misclassifying domain objects

as services that use them more frequently. For example, the

Product class in JPetStore2 is not accurately classified using

the proposed approach. This class represents information on

the animal breeds. Therefore, the Product objects should be

created and maintained in the Catalog Management micros-

ervice which manages pet data in the web app. However,

these objects are more frequently used in the Cart Manage-

ment microservice than in the Catalog Management micros-

ervice. This occurs because the Cart object in the Catalog

Management microservice often needs to access the data on

pets that a user intends to purchase. Accordingly, the pro-

posed approach classifies the Product class as a Cart Man-

agement microservice. This issue can be addressed in future

works by refining the identification and classification of

domain objects.

The performance of the proposed approach and existing

approaches can be compared from the view component and

the table component perspectives. The Accuracyview of the

proposed approach is 41%-62% higher than that of the

Mono2Micro which has a relatively good performance among

the existing approaches. Furthermore, the Accuracytable of

the proposed approach is 31%-67% higher than that of the

Mono2Micro. As a result, it can be observed that the perfor-

mance of the proposed approach from the view and table

component perspectives is better than that of existing

approaches.

For ShoppingApp, JSP is employed for views, and the

business logic accessing tables is written in the JSP source

code. These features pose a challenge for techniques that do

not consider views, as they can not gather information on the

business logic embedded in the JSP. However, our approach

allows us to obtain better identification results by consider-

ing these views. Table 2 shows that the Accuracytotal of the

proposed approach is higher than that of the existing

approaches by 24% to 40% in ShoppingApp.

For DayTrader, the Accuracyclass and the Accuracyview of

the proposed approach are low compared to those of the pro-

posed approach for other web apps. The reasons for this are

as follows: DayTrader contains use-cases and scenarios that

are present in documents and codes but are not executed.

Consequently, some classes or views are not executed in

Table 2. Comparison of our approach with baseline approaches

Approach

Web app

(Total number of components, Number of classes, Number of views, Number of tables)

JPetStore2

(73, 44, 16, 13)

JPetStore6

(53, 23, 17, 13)

PetClinic

(32, 18, 7, 7)

ShoppingApp

(37, 21, 12, 4)

DayTrader

(131, 85, 40, 6)

Hit Accuracy Hit Accuracy Hit Accuracy Hit Accuracy Hit Accuracy

Mono2Micro
48, 38,

3, 7

0.66, 0.86,

0.19, 0.54

30, 18,

8, 4

0.57, 0.78,

0.47, 0.31

15, 10,

4, 1

0.47, 0.56,

0.57, 0.14

21, 16,

4, 1

0.57, 0.76,

0.33, 0.25

58, 46,

10, 2

0.44, 0.54,

0.25, 0.33

Bunch
45, 37,

5, 3

0.62, 0.84,

0.31, 0.23

29, 19,

6, 4

0.55, 0.83,

0.35, 0.31

20, 14,

3, 3

0.62, 0.78,

0.43, 0.43

20, 14,

5, 1

0.54, 0.67,

0.42, 0.25

58, 45,

10, 3

0.44, 0.53,

0.25, 0.50

MEM
35, 25,

4, 6

0.48, 0.57,

0.25, 0.46

25, 13,

8, 4

0.47, 0.57,

0.47, 0.31

17, 11,

3, 3

0.53, 0.61,

0.43, 0.43

15, 11,

3, 1

0.41, 0.52,

0.25, 0.25

59, 45,

12, 2

0.45, 0.53,

0.30, 0.33

Proposed

approach

59, 35,

13, 11

0.81, 0.80,

0.81, 0.85

46, 20,

15, 11

0.87, 0.87,

0.88, 0.85

27, 16,

7, 4

0.84, 0.89,

1.00, 0.57

30, 17,

10, 3

0.81, 0.81,

0.83, 0.75

83, 50,

27, 6

0.63, 0.59,

0.68, 1.00
https://doi.org/10.56977/jicce.2023.21.4.268 276

Microservice Identification by Partitioning Monolithic Web Applications Based on Use-Cases
DayTrader, leading to the proposed approach being unable to

classify these components accurately as microservices. If

static analysis techniques such as the Bunch and the MEM

are used, components related to unexecuted use-cases and

scenarios can be identified. However, the Mono2Micro and

our approach, which are both dynamic analysis techniques,

can not identify the components mentioned above. Conse-

quently, our approach exhibits a lower performance in the

DayTrader experiment compared to experiments on other

web apps. Nevertheless, in the DayTrader experiment, the

Accuracytotal obtained by the proposed approach is at least

18% higher than those of the baseline approaches, showing

that our approach has better identification performance.

The performance described above, assessed in comparison

with the ground truth identified by web app experts, indi-

cates that the microservice apps identified using our

approach align closely with those identified by experts from

a functional perspective. In short, our identification tech-

nique can properly partition web apps by function, as

intended by experts. The experimental results described

above indicate that the proposed approach can be effectively

used to identify microservices.

E. RQ2: Are Tables and Views Appropriately Allo-
cated to Microservices?

It is crucial to assess whether tables and views are

assigned appropriately to microservices when those micros-

ervices are identified using the proposed approach. To con-

duct this evaluation, experiments were conducted as

described below.

1) Evaluation Method

The components of the five types of web apps were classi-

fied as microservices using the proposed approach. To deter-

mine whether the views and tables were appropriately

considered using our technique, the following three groups

were generated. One group was produced in which the clas-

sification results for tables and views were removed from the

original classification results; another group was produced in

which only the classification results for tables were removed;

and a third group in which only classification results for

views were removed. Subsequently, in these three groups,

each component with removed classification result is ran-

domly assigned to a microservice. An accuracy metric was

employed to compare the original classification results with

the classification results of the three groups.

2) Results and Analysis

The results are presented in Table 3. The configurations of

the Hit column and the Accuracy columns in this table are

the same as those listed in Table 2. It is noteworthy that the

accuracies in Table 3 have the following characteristics.

First, for the group without the classification results for

views and tables, only views and tables are randomly classi-

fied as microservices. Therefore, the Accuracyclass of this

group is the same as that of the proposed approach. Second,

for the group without the classification results for views,

only the views are randomly classified. Thus, the Accuracy-

class and the Accuracytable of this group are the same as those

of the proposed approach. Third, in the case of the group

without the classification results for tables, only the tables

are randomly classified. Therefore, the Accuracyclass and the

Accuracyview of this group are the same as those of the pro-

posed approach. Overall, for all five web apps used in the

experiment, the accuracies of the proposed approach are bet-

ter than those of the three groups without the classification

results for tables or views.

First, the performance of the proposed approach and the

other three groups is compared from a total component per-

spective. The Accuracytotal of the proposed approach is 3%-

32% higher than that of the other three groups. For JPet-

Store6, the proposed approach shows significantly better per-

formance compared to the group without the classification

Table 3. Comparison with and without considering tables and views

Approach

Web app

(Total number of components, Number of classes, Number of views, Number of tables)

JPetStore2

(73, 44, 16, 13)

JPetStore6

(53, 23, 17, 13)

PetClinic

(32, 18, 7, 7)

ShoppingApp

(37, 21, 12, 4)

DayTrader

(131, 85, 40, 6)

Hit Accuracy Hit Accuracy Hit Accuracy Hit Accuracy Hit Accuracy

Without

table & view

43, 35,

5, 3

0.59, 0.80,

0.31, 0.23

29, 20,

5, 4

0.55, 0.87,

0.29, 0.31

22, 16,

3, 3

0.69, 0.89,

0.43, 0.43

23, 17,

5, 1

0.62, 0.81,

0.42, 0.25

63, 50,

10, 3

0.48, 0.59,

0.25, 0.50

Without

view

49, 35,

3, 11

0.67, 0.80,

0.19, 0.85

35, 20,

4, 11

0.66, 0.87,

0.24, 0.85

21, 16,

1, 4

0.66, 0.89,

0.14, 0.57

24, 17,

4, 3

0.65, 0.81,

0.33, 0.75

66, 50,

10, 6

0.50, 0.59,

0.25, 1.00

Without

table

53, 35,

13, 5

0.73, 0.80,

0.81, 0.38

40, 20,

15, 5

0.75, 0.87,

0.88, 0.38

25, 16,

7, 2

0.78, 0.89,

1.00, 0.29

28, 17,

10, 1

0.76, 0.81,

0.83, 0.25

79, 50,

27, 2

0.60, 0.59,

0.68, 0.33

Proposed

approach

59, 35,

13, 11

0.81, 0.80,

0.81, 0.85

46, 20,

15, 11

0.87, 0.87,

0.88, 0.85

27, 16,

7, 4

0.84, 0.89,

1.00, 0.57

30, 17,

10, 3

0.81, 0.81,

0.83, 0.75

83, 50,

27, 6

0.63, 0.59,

0.68, 1.00
277 http://jicce.org

J. lnf. Commun. Converg. Eng. 21(4): 268-280, Dec. 2023
results for tables and views, with a difference in the Accura-

cytotoal of 32%. However, for DayTrader, the proposed

approach shows only slightly better performance compared

to the group without the classification results for tables, with

a difference in the Accuracytotal of only 3%. As explained in

the previous paragraph, the Accuracyclass and Accuracyview of

the group without the classification results for tables are the

same as those of the proposed approach. Therefore, the dif-

ference in the Accuracytotal between the proposed approach

and the group without the classification results for tables

depends on the proportion of tables among all components in

the web app and the performance of the table classification.

For DayTrader, the Accuracytable of the proposed approach is

100%, which is 67% higher than the Accuracytable of the

group without the classification results for the tables. How-

ever, the percentage of tables in DayTrader is low (3%). In

other words, even if all tables in DayTrader are accurately

classified as microservices, the Accuracytotal can only be

improved by approximately 3%. Therefore, the difference in

the Accuracytotal between the proposed approach and the

group without the classification results for the tables is not

significant.

Second, the performance of the proposed approach and the

other three groups might be compared from the class compo-

nent perspective. However, this comparison is meaningless.

As mentioned earlier, the Accuracyclass of the proposed

approach is the same as that of the other three groups for

each subject’s web apps.

Third, the performance of the proposed approach and the

other three groups is compared from the view component

perspective. The average percentage of views among all the

components in the five web apps was 32%. A comparison

between the group without the classification results for

views and the proposed approach demonstrates superior

results with the proposed approach. For JPetStore6, in which

the percentage of views is high at 37%, the Accuracytotal of

the proposed approach is 21% higher than that of the group

without the classification results for views. In addition, the

Accuracyview of these two groups differs by 64%. However,

for JPetStore2, in which the percentage of views is low at

27%, the Accuracytotal of the proposed approach is 14%

higher than that of the group without the classification

results for views. In this case, the Accuracyview of these two

groups differs by 62%. Overall, the Accuracyview of the pro-

posed approach is 43-86% higher than that of the group

without the classification results for view.

Finally, the performance of the proposed approach and the

other three groups is compared from a table component per-

spective. The average percentage of tables among all the

components in the five web apps is 11%. For JPetStore6, in

which the percentage of tables is a large rate of 22%, when

the group without the classification results for tables is com-

pared with the proposed approach, the Accuracytotal differs

by up to 12% and the Accuracytable differs by up to 47%.

However, for DayTrader, for which the percentage of tables

is low at only 3%, a comparison between the proposed

approach and the group without the classification results for

tables shows that the Accuracytotal of these two groups dif-

fers by only 3%. As mentioned earlier, because the propor-

tion of tables in DayTrader is small, the Accuracytotal is not

significantly affected by the performance of table classifica-

tion. However, the Accuracytable of the proposed approach is

66% higher than that of the group without the classification

results for the tables. Overall, the Accuracytable of the pro-

posed approach is 28%-67% higher than that of the group

without the classification results for tables.

The experimental results described above demonstrate that

the tables and views can be appropriately assigned to micro-

services using the proposed approach.

V. CONCLUSION

This paper introduces a novel approach for transforming

monolithic web apps into microservices by utilizing use-

cases as fundamental units. Each microservice identified

using this method has a specific function. Additionally, in

contrast to other methods for identifying microservices, this

paper considers all three layers of web apps. As a result, our

approach showed better performance than existing approaches.

In future work, we plan to verify the applicability of our

approach to web apps developed using languages other than

Java. In addition, we intend to further validate our approach

by applying it to large-scale web apps.

ACKNOWLEDGEMENTS

This work was supported by the National Research Foun-

dation of Korea (NRF) grant funded by the Korea govern-

ment (MSIT) (NRF-2021R1F1A1048842). This study was

supported by the Research Fund, 2021 of The Catholic Uni-

versity of Korea. This paper is a revised and expanded ver-

sion of a Master's thesis [37] written by one of the authors.

REFERENCES

[1] H. M. Kienle and D. Distante, “Evolution of web systems,” in

Evolving Software Systems, Berlin, Germany: Springer, ch. 7, pp.

201-228, 2014. DOI: 10.1007/978-3-642-45398-4_7.

[2] M. d' Aquin, M. Sabou, and E. Motta, “Modularization: a key for the

dynamic selection of relevant knowledge components,” in

Proceeding of the Workshop on Modular Ontologies, Athens: GA,

pp. 1-14, 2006.

[3] S. Comella-Dorda, K. Wallnau, R. C. Seacord, and J. Robert, “A

survey of black-box modernization approaches for information
https://doi.org/10.56977/jicce.2023.21.4.268 278

Microservice Identification by Partitioning Monolithic Web Applications Based on Use-Cases
systems,” in Proceeding of the. International Conference on

Software Maintenance, San Jose: CA, pp. 173-183, 2000. DOI:

10.1109/ICSM.2000.883039.

[4] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,

R. Mustafin, and L. Safina, “Microservices: yesterday, today, and

tomorrow,” in Present and Ulterior Software Engineering, Cham,

Switzerland: Springer, ch. 12, pp. 195-216, 2017. DOI: 10.1007/978-

3-319-67425-4_12.

[5] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann,

“Microservices migration in industry: intentions, strategies, and

challenges,” in Proceeding of the International Conference on

Software Maintenance and Evolution, Cleveland: OH, pp. 481-490,

2019. DOI: 10.1109/ICSME.2019.00081.

[6] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116-

116, 2015. DOI: 10.1109/MS.2015.11.

[7] M. Abdellatif, A. Shatnawi, H. Mili, N. Moha, G. E. Boussaidi, G.

Hecht, J. Privat, and Y. Guéhéneuc, “A taxonomy of service

identification approaches for legacy software systems modernization,”

Journal of Systems and Software, vol. 173, no. 1 pp. 11086, 2021.

DOI: 10.1016/j.jss.2020.110868.

[8] H. Knoche and W. Hasselbring, “Using microservices for legacy

software modernization,” IEEE Software, vol. 35, no. 3, pp. 44-49,

2018. DOI: 10.1109/MS.2018.2141035.

[9] A. Levcovitz, R. Terra, and M. T. Valente, “Towards a technique for

extracting microservices from monolithic enterprise systems,”

arXiv:1605.03175, 2016. DOI: 10.48550/arXiv.1605.03175.

[10] M. Kamimura, K. Yano, T. Hatano, and A. Matsuo, “Extracting

candidates of microservices from monolithic application code,” in

Proceeding of the Asia Pacific Software Engineering Conference,

Nara, Japan, pp. 571-580, 2018. DOI: 10.1109/APSEC.2018.00072.

[11] G. Mazlami, J. Cito, and P. Leitner, “Extraction of microservices

from monolithic software architectures,” in Proceeding of the

International Conference on Web Service, Honolulu: HI, pp. 524-

531, 2017. DOI: 10.1109/ICWS.2017.61.

[12] N. Dmitry and S.S. Manfred, “On micro-services architecture,”

International Journal of Open Information Technologies, vol. 2, no.

9, pp. 24-27, 2014.

[13] D. Bajaj, A. Goel, and S. C. Gupta, “GreenMicro: identifying

microservices from use cases in greenfield development,” IEEE

Access, vol. 10, pp. 67008-67018, 2022. DOI: 10.1109/ACCESS.

2022.3182495.

[14] W. Jin, T. Liu, Q. Zheng, D. Cui, and Y. Cai, “Functionality-oriented

microservice extraction based on execution trace clustering,” in

Proceeding of the International Conference on Web Services, San

Francisco: CA, pp. 211-218, 2018. DOI: 10.1109/ICWS.2018.00034.

[15] S. Tyszberowicz, R. Heinrich, B. Liu, and Z. Liu, “Identifying

microservices using functional decomposition,” in Proceeding of the

International Symposium on Dependable Software Engineering.

Theories, Tools, and Applications, Beijing, China, pp. 50-65, 2018.

DOI: 10.1007/978-3-319-99933-3_4.

[16] Y. Zhang, B. Liu, L. Dai, K. Chen, and X. Cao, “Automated

microservice identification in legacy systems with functional and

non-functional metrics,” in Proceeding of the International

Conference on Software Architecture, Salvador, Brazil, pp. 135-145,

2020. DOI: 10.1109/ICSA47634.2020.00021.

[17] L. Bao, C. Yin, W. He, J. Ge, and P. Chen, “Extracting reusable

services from legacy object-oriented systems,” in Proceeding of the

International Conference on Software Maintenance, Timisoara,

Romania, pp. 1-5, 2010. DOI: 10.1109/ICSM.2010.5609744.

[18] A. K. Kalia, J. Xiao, R. Krishna, S. Sinha, M. Vukovic, and D.

Banerjee, “Mono2Micro: a practical and effective tool for

decomposing monolithic Java applications to microservices,” in

Proceeding of the ACM Joint Meeting of European Software

Engineering Conference and Symposium on the Foundations of

Software Engineering, Athens, Greece, pp. 1214-1224, 2021. DOI:

10.1145/3468264.3473915.

[19] D. Taibi and K. Systä, “From monolithic systems to microservices: a

decomposition framework based on process mining,” in Proceeding

of the International Conference on Cloud Computing and Services

Science, Heraklion, Greece, pp. 153-164, 2019. DOI: 10.5220/

0007755901530164.

[20] B. Kurniawan, Java for the web with servlets, JSP, and EJB: A

Developer’s Guide to J2EE Solutions, Carmel, IN: Sams, 2002.

[21] C. D. Grosso, M. D. Penta, and I. G. R. de Guzman, “An approach

for mining services in database oriented applications,” in Proceeding

of the European Conference on Software Maintenance and

Reengineering, Amsterdam, Netherlands, pp. 287-296, 2007. DOI:

10.1109/CSMR.2007.11.

[22] S. H. Kim and J. Oh, “An effective reuse-based approach to

automatic identification of microservices,” Journal of the Korea

Institute of Information and Communication Engineering, vol. 27,

no. 6, pp. 673-687, 2023. DOI: 10.6109/jkiice.2023.27.6.673.

[23] S. H. Kim, J. H. Shin, and J. Oh, “Utilizing web component structure

for automatic microservices identification,” Journal of the Korea

Institute of Information and Communication Engineering, vol. 27,

no. 7, pp. 892-895, 2023. DOI: 10.6109/jkiice.2023.27.7.892.

[24] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.

Griswold, “An overview of aspectJ,” in Proceeding of the European

Conference on Object-Oriented Programming, Budapest, Hungary,

pp. 327-354, 2001. DOI: 10.1007/3-540-45337-7_18.

[25] B. Andrade, S. Santos, and A. R. Silva, “From monolith to

microservices: static and dynamic analysis comparison,”

arXiv:2204.11844, 2022. DOI: 10.48550/arXiv.2204.11844.

[26] L. Meurice, C. Nagy, and A. Cleve, “Static analysis of dynamic

database usage in java systems,” in Proceeding of the International

Conference on Advanced Information System Engineering,

Ljubljana, Slovenia, pp. 491-506, 2016. DOI: 10.1007/978-3-319-

39696-530.

[27] A. Cleve and J.-L. Hainaut, “Dynamic analysis of SQL statements

for data-intensive applications reverse engineering,” in Proceeding of

the Working Conference on Reverse Engineering, Antwerp,

Belgium, pp. 192-196, 2008. DOI: 10.1109/WCRE.2008.38.

[28] J. Oh, W. H. Ahn, and T. Kim, “Automatic extraction of

dependencies between web components and database resources in

java web applications,” Journal of Information and Communication

Convergence Engineering, vol. 17, no. 2, pp. 149-160, 2019.

[29] M. Stal, “Using architectural patterns and blueprints for service-

oriented architecture,” IEEE Software, vol. 23, no. 2, pp. 54-61,

2006. DOI: 10.1109/MS.2006.60.

[30] J. Oh, H. Ahn, and T. Kim, “Automatic extraction of component

collaboration in java web applications by using servlet filters and

wrappers,” KIPS Transactions on Software and Data Engineering,

vol. 6, no. 7, pp. 329-336, 2017.

[31] J. B. Kruskal, “On the shortest spanning subtree of a graph and the

traveling salesman problem,” Proceedings of the American

Mathematical Society, vol. 7, no. 1, pp. 48-50, 1956. DOI: 10.2307/

2033241.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to algorithms. Cambridge, MA: MIT Press, 2009.

[33] B. S. Mitchell and S. Mancoridis, “On the automatic modularization

of software systems using the Bunch tool,” IEEE Transactions on

Software Engineering, vol. 32, no. 3, pp. 193-208, 2006. DOI:

10.1109/TSE.2006.31.

[34] M, Melanie. An introduction to genetic algorithms. Cambridge, MA:
279 http://jicce.org

J. lnf. Commun. Converg. Eng. 21(4): 268-280, Dec. 2023
MIT press, 1998.

[35] R. Sibson, “SLINK: An optimally efficient algorithm for the single-

link cluster method,” The Computer Journal, vol. 16, no. 1, pp. 30-

34, 1973. DOI: 10.1093/comjnl/16.1.30.

[36] M. Grandiniconsider, E. Bagli, and G. Visani, “Metrics for multi-

class classification: an overview,” arXiv:2008.05756, 2020. DOI:

10.48550/arXiv.2008.05756.

[37] D. Jung, “A use-case-based approach to transforming legacy web

applications into microservices,” M.S. dissertation, The Catholic

University of Korea, Bucheon, Republic of Korea, 2023.

Si-Hyun Kim
received a B.S. degree in 2023 from the School of Computer Science and Information Engineering in the Catholic

University of Korea. He is currently a M.S. student at the School of Computer Science and Information Engineering of the

Catholic University of Korea. His current research interests include software engineering and web engineering.

Daeil Jung
received a B.S. degree in 2021 and a M.S. degree in 2023 from the School of Computer Science and Information

Engineering in the Catholic University of Korea. His research interests include microservices, web engineering, and

software engineering.

Norhayati Mohd Ali
received the PhD degree in computer science from the University of Auckland, New Zealand, in 2011. Previously, she

received the bachelor’s degree from the Universiti Teknologi Malaysia and the master’s degree from the University of

Southampton, United Kingdom. She is an associate professor and currently, the head of the Software Engineering and

Information System Department, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia. Her

research interests include software engineering, model-driven engineering, design critics in software engineering, and

software project management.

Abu Bakar Md Sultan
received the bachelor's degree in computer from Universiti Kebangsaan Malaysia, in 1993, and the master's degree in

software engineering and the Ph.D. degree in artificial intelligence from Universiti Putra Malaysia (UPM).

Jaewon Oh
received his BSc, MSc, and PhD in Computer Science from Seoul National University, Korea in 1997, 1999, and 2004

respectively. He was a senior research engineer at Samsung Electronics Company from 2004 to 2007. Currently, he is a

full professor at the School of Computer Science and Information Engineering of the Catholic University of Korea. His

current interests include web engineering, software evolution, and software engineering.
https://doi.org/10.56977/jicce.2023.21.4.268 280

