DOI QR코드

DOI QR Code

The Activity of Standard and Fast SCR over V-based Catalysts Supported on Various TiO2

다양한 TiO2에 담지된 바나디아 촉매의 표준 및 빠른 SCR 활성

  • Ji Eun Jeong (Department of Environmental Engineering, Kongju National University) ;
  • Yeon Jeong Jo (Department of Environmental Engineering, Kongju National University) ;
  • Inyoung Lee (Korea Electric Power Research Institute Climate Change & Environment Group) ;
  • Jeongkeun Lee (Korea Electric Power Research Institute Climate Change & Environment Group) ;
  • Chang-Yong Lee (Department of Environmental Engineering, Kongju National University)
  • 정지은 (공주대학교 환경공학과) ;
  • 조연정 (공주대학교 환경공학과) ;
  • 이인영 (한국전력연구원 에너지환경연구소) ;
  • 이정근 (한국전력연구원 에너지환경연구소) ;
  • 이창용 (공주대학교 환경공학과)
  • Received : 2023.09.04
  • Accepted : 2023.10.08
  • Published : 2023.12.10

Abstract

The physicochemical properties of VOx/TiO2 catalysts with different TiO2 supports were analyzed, and SCR reactions were performed. VOx/TiO2 catalysts were prepared by impregnation using anatase TiO2, which was manufactured by Sigma Aldrich and prepared from TiOCl2 and titanium isopropoxide (TTIP) as a precursor. They are denoted as VS, VC, and VP. The specific surface area of the VS was 1/10 or less of that of the VC and VP, and the dispersibility of vanadium oxide was relatively low. As a result of XPS analysis, the ratio of adsorbed oxygen was higher in VS and VP with Ti3+ than in VC. In VC and VP, vanadium mainly existed in V4+ and V3+ states in relation to the dispersibility of vanadium oxide. The amount of adsorbed oxygen contributed more to NH3-SCR activity than vanadium oxide dispersibility below 250 ℃, while vanadium oxide dispersibility contributed more to activity beyond 300 ℃. The fast SCR activity in all three samples was the highest at NO2/NOx = 0.5, followed by VS < VC < VP samples. It was determined that the dispersibility of vanadium oxide had a significant effect on fast NH3-SCR activity.

지지체 TiO2가 다른 VOx/TiO2 촉매들에 대해 특성 분석과 SCR 반응을 수행하였다. Sigma Aldrich 사의 anatase TiO2와 TiOCl2와 TTIP를 출발 원료로 제조한 TiO2를 사용하여 VOx/TiO2 촉매를 제조하고, 이를 각각 VS, VC, VP로 표시하였다. VS 시료의 비표면적은 VC 및 VP 시료 대비 1/10 이하로서 바나듐 산화물의 분산성은 상대적으로 낮았다. XPS 분석 결과, 촉매 표면의 흡착 산소의 비는 Ti3+가 존재하는 VS와 VP 시료가 VC 시료에 비해 높았다. 또한 VC와 VP시료에서 바나듐은 바나듐 산화물의 분산성과 관련하여 주로 V4+와 V3+ 상태로 존재하였다. 250 ℃ 이하 NH3-SCR 활성에는 바나듐 산화물의 분산성보다는 흡착 산소 양이 더 기여한 반면, 300 ℃ 이상 활성에는 바나듐 산화물의 분산성이 더 기여하는 것으로 판단되었다. 촉매들의 fast SCR 활성은 3 시료 모두 NO2/NOx = 0.5에서 가장 높았으며, VS < VC < VP 시료 순으로 나타났다. 빠른 NH3-SCR 촉매 활성에는 촉매의 바나듐 산화물의 분산성이 영향을 크게 미친다고 판단되었다.

Keywords

Acknowledgement

본 연구는 한국전력공사 전력연구원의 재원을 받아 진행되었습니다. (과제번호: R21VJ01)

References

  1. M. An, S. Kim, and S. Lee, NOx reduction analysis from hybrid De-NOx facility of combined cycle power plant, KSFM J. Fluid Mach., 24, 62-66 (2021).  https://doi.org/10.5293/kfma.2021.24.6.062
  2. J. S. Song, J. M. Yu, S. Y. Han, J. W. Choi, and K. B. Yoon, Risk assessment technique for gas fuel supply system of combined cycle power plants (I): Based on API RBI procedures, J. Energ. Eng., 27, 1-13 (2018).  https://doi.org/10.5855/ENERGY.2018.27.2.001
  3. S. P. Cho, Air pollution control system for combined cycle power plants in Korea, KCI News, 25, 28-33 (2022). 
  4. S. -J. Lee and Y. Kim, A study on the demonstration of yellow plume elimination system from combined cycle power plant using liquid injection system, J. Korea Acad. Industr. Coop. Soc., 21, 317-324 (2020). 
  5. S. B. Kim, G. R. Choi, J. H. Shin, and S. C. Hong, Selective catalytic reduction (SCR) of NOx with NH3 on Sb-promoted VWTi catalysts, Appl. Chem. Eng., 32, 35-41 (2021).  https://doi.org/10.14478/ACE.2020.1097
  6. J. Yeo and S. Hong, A study on the effect of low-temperature activity on vanadium catalysts, Clean Technol., 26, 321-328 (2020). 
  7. H. H. Lee, K. H. Park, and W. S. Cha, Characterization of low temperature selective catalytic reduction over Ti added Mn-Cu metal oxides, Appl. Chem. Eng., 24, 599-604 (2013).  https://doi.org/10.14478/ace.2013.1057
  8. J. O. Lee, D. H. Lee, Y. -H. Song, D. -K. Oh, and J. -W. Seo, A study for SCR catalyst reduction in fast SCR using oxidation catalyst, Appl. Chem. Eng., 24, 333-336 (2013) 
  9. C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, and B. Bandlkonrad, A "nitrate route" for the low temperature "fast SCR" reaction over a V2O5-WO3/TiO2 commercial catalyst, Chem. Commun., 23, 2718-2719 (2004).  https://doi.org/10.1039/B411613E
  10. Y. J. Lee, J. M. Won, S. H. Ahn, and S. C. Hong, The study of reaction characteristics of V/W/TiO2 catalyst using Se-TiO2 support on NH3-SCR reaction, Appl. Chem. Eng., 32, 599-606 (2021). 
  11. J. H. Shin, D. W. Kwon, and S. C. Hong, A study of structural characteristic control and reaction activity of V/TiO2 for NH3-SCR according to preparation method, J. Korean Soc. Atmos. Environ., 33, 297-305 (2017). https://doi.org/10.5572/KOSAE.2017.33.4.297
  12. D. Yun, Y. Zhao, L. Abdullahi and J. E. Herrera, The effect of interstinal nitrogen in the activity of the VOx/N-TiO2 catalytic system for ethanol partial oxidation, J. Mol. Catal. Chem., 390, 169-177 (2014).  https://doi.org/10.1016/j.molcata.2014.03.022
  13. S. H. Lee, and C. -Y. Lee, Visible light induced photocatalytic activity of N-doped TiO2, Appl. Chem. Eng., 29, 298-302 (2018). 
  14. Y. Xu, S. Wu, P. Wan, J. Sun, and Z. D. Hood, Introducing Ti3+ defects based on lattice distortion for enhanced visible light photoreactivity in TiO2 microspheres, RSC Adv., 7, 32461-32467 (2017). https://doi.org/10.1039/C7RA04885H
  15. W. Zhao, Q. Zhong, Y. Pan, and R. Zhang, Systematic effects of S-doping on the activity pf V2O5/TiO2 catalyst for low-temperature NH3-SCR, Chem. Eng. J., 228, 815-823 (2013).  https://doi.org/10.1016/j.cej.2013.05.056
  16. S. A. Abdullah, M. Z. Sahdan, N. Nayan, Z. Embong, C. R. C. Hak, and F. Adriyando, Neutron beam interaction with rutile TiO2 single crystal (1 1 1): Raman and XPS study on Ti3+-oxygen vacancy formation, Mater. Lett., 263, 127143 (2020). 
  17. W. Zhao, K. Zhang, L. Wu, Q. Wang, D. Shang, and Q. Zhong, Ti3+ doped V2O5/TiO2 catalyst for efficient selective catalytic reduction of NOx with NH3, J. Colloid Interface Sci., 581, 76-83 (2021).  https://doi.org/10.1016/j.jcis.2020.07.131
  18. B. Ye, M.-j. Lee, S.-y. Chun, G. Lee, J. Kim, B. Jeong, T. Kim, and H.-D. Kim, Promotional effect of surface treated N-doped as support for VOx-based catalysts on the selective catalytic reduction of NO using NH3, Appl. Surf. Sci., 560, 149934 (2021). 
  19. X. Zhao, Y. Yan, L. Mao, M. Fu, H. Zhao, L. Sun, Y. Xiao and G. Dong, A relationship between the V4+/V5+ ratio and the surface dispersion, surface acidity, and redox performance of V2O5-WO3/TiO2 SCR catalysts, RSC Adv., 8, 31081-31093 (2018).  https://doi.org/10.1039/C8RA02857E
  20. W. Jin, B. Q. Jiao, W. Chen, M. Y. Li, J. Zhao, and X. W. Zhang, In situ supported VOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3, IOP Conf. Ser.: Mater. Sci. Eng., 699, 25-28 (2019). 
  21. K. J. Lee, P. A. Kumar, M. S. Maqbool, K. N. Rao, K. H. Song, and H. P. Ha, Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR: Physico-chemical properties and catalytic activity, Appl. Catal. B, 142-143, 705-717 (2013).  https://doi.org/10.1016/j.apcatb.2013.05.071
  22. H. -C. Jeong, S. -M. Sim, Y. -D. Kim, S. -J. Jeong and W. -S. Kim, An experimental study on the NH3-SCR of NOx over a vanadium-based catalyst, Transaction of KSAE, 20, 20-27 (2012). 
  23. L. Arnarson, H. Falsig, S. B. Rasmussen, J. V. Lauritsen and P. G. Moses, A complete reaction mechanism for standard and fast selective catalytic reduction of nitrogen oxides on low coverage VOx TiO2(001) catalysts, J. Catal., 346, 188-197 (2017). https://doi.org/10.1016/j.jcat.2016.12.017