DOI QR코드

DOI QR Code

Development of Advanced Polymeric Binders for High Voltage LiNi0.5Mn1.5O4 cathodes in Lithium-ion batteries

고전압 LiNi0.5Mn1.5O4 양극 고성능 바인더 개발 연구

  • Dae Hui Yun (Small Battery Development office, SAMSUNG SDI CO. LTD) ;
  • Sunghun Choi (Department of Battery Convergence Engineering, Kangwon National University)
  • Received : 2023.12.18
  • Accepted : 2023.12.29
  • Published : 2023.12.31

Abstract

Spinel LiNi0.5Mn1.5O4 (LNMO) has been considered as one of most promising cathode material, because of its low-cost and competitive energy density. However, 4.7V vs. Li/Li+ of high operating potential facilitates electrolyte degradation on cathode-electrolyte interface during charge-discharge process. In particular, commercial polyvinylidene fluoride (PVDF) is not sutaible for LNMO cathode binder because its weak van der waals force induces thick and non-uniform coverage on the cathode surface. In this review, we study high performance binders for LNMO cathode, which forms uniform coating layer to prevent direct contact between electrolyte and LNMO particle as well as modifying high quality cathode electrolyte interphase, improved cell performace.

Keywords

References

  1. Li, W., Cho, Y. -G., Yao, W., Li, Y., Cronk, A., Shimizu, R., Schroeder, M. A., Fu, Y., Zou, F., Battaglia, V., 2020, Enabling high areal capacity for Co-free high voltage spinel materials in next-generation Li-ion batteries, J. Power Sources 473, 228579.
  2. Manthiram, A., Chemelewski, K., Lee, E. -S., 2014, A perspective on the high-voltage LiMn1.5Ni0.5O4 cathode for lithium-ion batteries, Energy. Environ. Sci. 7, 1339-1350. https://doi.org/10.1039/c3ee42981d
  3. Yang. L, Ravdel, B., Lucht, B. L., 2010, Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 Cathodes for lithium-ion batteries, J. Elecrochem. Solid-State Lett. 13, A95.
  4. Zhan, C., Wu, T., Lu, J., Amine, K., 2018, Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes - a critical review, Energy Environ. Sci. 11, 243-257. https://doi.org/10.1039/C7EE03122J
  5. Matsui, M., Dokko, K., Kanamura, K., 2017, Srface layer formation and stripping process on LiMn2O4 and LiNi1/2Mn3/2O4 thin flim electrodes, J. Electrochem. Soc. 157, A121.
  6. Han, J. G., Kim, K., Lee, Y., Choi, N. S., 2019, Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries, Adv. Mater. 31, 1804822.
  7. Fu, C., Wang, G., Wang, J., Meng, L., Zhang, W., Li, X., Li, L., 2019, A LiPF6-electrolyte-solvothermal route for the synthesis of LiF/LixPFyOz-coated Li-rich cathode materials with enhanced cycling stability, J. Mater. Chem. A 7, 23149-23161. https://doi.org/10.1039/C9TA09327C
  8. Dong, T., Zhang, H., Ma, Y., Zhang, J., Du, X.., Lu, C., Shangguan, X., Li, J., Zhang, M., Yang, J., Zhou, X., Cui, G., 2019, A well-designed water-soluble binder enlightening the 5V-class LiNi0.5Mn1.5O4 cathodes, J. Mater. Chem. A 7, 24594-24601. https://doi.org/10.1039/C9TA08299A
  9. Ma, Y., Chen, K., Ma, J., Xu, G., Dong, S., Chen, B., Li, J., Chen, Z., Zhou, X., Cui, G., 2019, A biomass based free radical scavenger binder endowing a compatible cathode interface for 5V lithium-ion batteries, Energy Environ. Sci. 12, 273-280. https://doi.org/10.1039/C8EE02555J
  10. Chang, B., Yun, D. H., Hwang, I., Seo, J. K., Kang, J., Noh, G., Choi, S., Choi, J. W., 2023, Carrageenan as a sacrificial binder for 5V LiNi0.5Mn1.5O4 cathodes in lithium-ion batteries, Adv. Mater. 35, 2303787.