DOI QR코드

DOI QR Code

Study for the Liquid Metals Enabled Stretchable Electronics

액체금속을 활용한 신축성 전자소재 개발 동향

  • Joo Hyung Lee (The Research Institute of Industrial Science, Hanyang University) ;
  • Yoon Su Lee (Division of Chemical Engineering and Bioengineering, Kangwon National University) ;
  • Jin Yoo (Division of Chemical Engineering and Bioengineering, Kangwon National University) ;
  • Seoyeon Won (Department of Chemical Engineering, University of Utah) ;
  • Taehwan Lim (Division of Chemical Engineering and Bioengineering, Kangwon National University)
  • Received : 2023.12.15
  • Accepted : 2023.12.27
  • Published : 2023.12.31

Abstract

Stretchable and flexible electronics that comply with dynamic movements and micromotion of the human tissues can enable real-time monitoring of physiologic signals onto the human skin and in the brain, respectively. Especially, gallium based liquid metal stretchable electronics can offer human-interactive biosensors to monitor various physiologic parameters. However, the liquid-like nature, surface oxidation and contamination by organic materials, and low biostability of the liquid metals have still limited the long-term use as bioelectronics. Here we introduced electrochemical deposition without oxidation pathways to overcome these practical challenges in liquid metal bioelectronics. CNT/PDDA composite with reduction way and PEDOT:BF4 with oxidation way under organic solvent are suggested as rationally designed material engineering approaches. We confirmed that the structures with the soft, flexible, and stretchable liquid metal platform can successfully detect dopamine with a high sensitivity and selectivity, record neural signals including action potentials without scar formation, and monitor physiologic signals such as EMG and ECG.

Keywords

References

  1. Rao, Z., Ershad, F., Almasri, A., Gonzalez, L., Wu, X., Yu, C., 2020, Soft Electronics for the Skin: From Health Monitors to Human-Machine Interfaces, Adv. Mater. Technol. 5:9 2000233.
  2. Ma, Z., Huang, Q., Xu, Q., Zhuang, Q., Zhao, X., Yang, Y., Qiu, H., Yang, Z., Wang, C., Chai, Y., Zheng, Z., 2021, Permeable Superelastic Liquid-Metal Fibre Mat Enables Biocompatible and Monolithic Stretchable Electronics, Nat. Mater. 20:6 859-868. https://doi.org/10.1038/s41563-020-00902-3
  3. Mishra, S., Kim, Y.-S., Intarasirisawat, J., Kwon, Y.-T., Lee, Y., Mahmood, M., Lim, H.-R., Herbert, R., Yu, K. J., Ang, C. S., Yeo, W.-H., 2020, Soft Wireless Periocular Wearable Electronics for Real-Time Detection of Eye Vergence in a Virtual Reality toward Mobile Eye Therapies, Sci. Adv. 6:11 aay1729.
  4. Kwak, J. W., Han, M., Xie, Z., Chung, H. U., Lee, J. Y., Avila, R., Yohay, J., Chen, X., Liang, C., Patel, M., Jung, I., Kim, J., Namkoong, M., Kwon, K., Guo, X., Ogle, C., Grande, D., Ryu, D., Kim, D. H., Madhvapathy, S., Liu, C., Yang, D. S., Park, Y., Caldwell, R., Banks, A., Xu, S., Huang, Y., Fatone, S., Rogers, J. A., 2020, Wireless Sensors for Continuous, Multimodal Measurements at the Skin Interface with Lower Limb Prostheses, Sci. Transl. Med. 12:574 abc4327.
  5. Wang, B., Facchetti, A., 2019, Mechanically Flexible Conductors for Stretchable and Wearable E-Skin and E-Textile Devices, Adv. Mater. 31:28 1901408.
  6. Qi, D., Zhang, K., Tian, G., Jiang, B., Huang, Y., 2021, Stretchable Electronics Based on PDMS Substrates, Adv. Mater. 33:6 2003155.
  7. Cao, Z., Wang, R., He, T., Xu, F., Sun, J., 2018, Interface-Controlled Conductive Fibers for Wearable Strain Sensors and Stretchable Conducting Wires, ACS Appl. Mater. Interfaces 10:16 14087-14096. https://doi.org/10.1021/acsami.7b19699
  8. Fan, J. A., Yeo, W.-H., Su, Y., Hattori, Y., Lee, W., Jung, S.-Y., Zhang, Y., Liu, Z., Cheng, H., Falgout, L., Bajema, M., Coleman, T., Gregoire, D., Larsen, R. J., Huang, Y., Rogers, J. A., 2014, Fractal Design Concepts for Stretchable Electronics, Nat. Commun. 5 3266.
  9. Rogers, J. A., Someya, T., Huang, Y., 2010, Materials and Mechanics for Stretchable Electronics, Science 327:5973 1603-1607. https://doi.org/10.1126/science.1182383
  10. Liu, S., Shah, D. S., Kramer-Bottiglio, R., 2021, Highly Stretchable Multilayer Electronic Circuits Using Biphasic Gallium-Indium, Nat. Mater. 20:6 851-858. https://doi.org/10.1038/s41563-021-00921-8
  11. Veerapandian, S., Jang, W., Seol, J. B., Wang, H., Kong, M., Thiyagarajan, K., Kwak, J., Park, G., Lee, G., Suh, W., You, I., Kilic, M. E., Giri, A., Beccai, L., Soon, A., Jeong, U., 2021, Hydrogen-Doped Viscoplastic Liquid Metal Microparticles for Stretchable Printed Metal Lines, Nat. Mater. 20:4 533-540. https://doi.org/10.1038/s41563-020-00863-7
  12. Dickey, M. D., 2017, Stretchable and Soft Electronics Using Liquid Metals, Adv. Mater. 29:27 1606425.
  13. Li, G., Sun, F., Chen, H., Jin, Y., Zhang, A., Du, J., 2021, High-Efficiency Large-Area Printed Multilayer Liquid Metal Wires for Stretchable Biomedical Sensors with Recyclability, ACS Appl. Mater. Interfaces 13:48 56961-56971. https://doi.org/10.1021/acsami.1c17514
  14. Kozai, T. D. Y., Langhals, N. B., Patel, P. R., Deng, X., Zhang, H., Smith, K. L., Lahann, J., Kotov, N. A., Kipke, D. R., 2012, Ultrasmall Implantable Composite Microelectrodes with Bioactive Surfaces for Chronic Neural Interfaces, Nat. Mater. 11:12 1065-1073. https://doi.org/10.1038/nmat3468
  15. Li, G., Qiu, Z., Wang, Y., Hong, Y., Wan, Y., Zhang, J., Yang, J., Wu, Z., Hong, W., Guo, C. F., 2019, PEDOT:PSS/Grafted-PDMS Electrodes for Fully Organic and Intrinsically Stretchable Skin-like Electronics, ACS Appl. Mater. Interfaces 11:10 10373-10379. https://doi.org/10.1021/acsami.8b20255
  16. Kayser, L. V., Lipomi, D. J., 2019, Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS, Adv. Mater. 31:10 1806133.
  17. Mohan, A., Ashraf, P. M., 2019, Biofouling Control Using Nano Silicon Dioxide Reinforced Mixed-Charged Zwitterionic Hydrogel in Aquaculture Cage Nets, Langmuir 35:12 4328-4335. https://doi.org/10.1021/acs.langmuir.8b04071
  18. Kim, J.-H., Kim, S., So, J.-H., Kim, K., Koo, H.-J., 2018, Cytotoxicity of Gallium-Indium Liquid Metal in an Aqueous Environment, ACS Appl. Mater. Interfaces 10:20 17448-17454. https://doi.org/10.1021/acsami.8b02320
  19. Eaker, C. B., Dickey, M. D., 2016, Liquid Metal Actuation by Electrical Control of Interfacial Tension, Appl. Phys. Rev. 3:3 031103.
  20. Kalantar-Zadeh, K., Tang, J., Daeneke, T., O'Mullane, A. P., Stewart, L. A., Liu, J., Majidi, C., Ruoff, R. S., Weiss, P. S., Dickey, M. D., 2019, Emergence of Liquid Metals in Nanotechnology, ACS Nano 13:7 7388-7395. https://doi.org/10.1021/acsnano.9b04843
  21. Shu, J., Ge, D. A., Wang, E., Ren, H., Cole, T., Tang, S. Y., Li, X., Zhou, X., Li, R., Jin, H., Li, W., Dickey, M. D., Zhang, S., 2021, A Liquid Metal Artificial Muscle, Adv. Mater. 33:43 2103062.
  22. Ma, Z., Huang, Q., Xu, Q., Zhuang, Q., Zhao, X., Yang, Y., Qiu, H., Yang, Z., Wang, C., Chai, Y., Zheng, Z., 2021, Permeable Superelastic Liquid-Metal Fibre Mat Enables Biocompatible and Monolithic Stretchable Electronics, Nat. Mater. 20:6 859-868. https://doi.org/10.1038/s41563-020-00902-3
  23. Khan, M. R., Eaker, C. B., Bowden, E. F., Dickey, M. D., 2014, Giant and Switchable Surface Activity of Liquid Metal via Surface Oxidation, Proc. Natl. Acad. Sci. U.S.A. 111:39 14047-14051. https://doi.org/10.1073/pnas.1412227111
  24. Ding, Y., Zeng, M., Fu, L., 2020, Surface Chemistry of Gallium-Based Liquid Metals, Matter 3:5 1477-1506. https://doi.org/10.1016/j.matt.2020.08.012
  25. Jewett, S. A., Makowski, M. S., Andrews, B., Manfra, M. J., Ivanisevic, A., 2012, Gallium Nitride Is Biocompatible and Non-Toxic before and after Functionalization with Peptides, Acta Biomater. 8:2 728-733. https://doi.org/10.1016/j.actbio.2011.09.038
  26. Wissman, J., Dickey, M. D., Majidi, C., 2017, Field-Controlled Electrical Switch with Liquid Metal, Adv. Sci. 4:12 1700169.
  27. Zhang, Y. C., Wu, X., Hu, X. Y., Shi, Q. F., 2007, A Green Hydrothermal Route to GaOOH Nanorods, Mater. Lett. 61:7 1497-1499. https://doi.org/10.1016/j.matlet.2006.07.060
  28. Zhao, Y., Frost, R. L., Yang, J., Martens, W. N., 2008, Size and Morphology Control of Gallium Oxide Hydroxide GaO(OH), Nano-to Micro-Sized Particles by Soft-Chemistry Route without Surfactant, J. Phys. Chem. C 112:10 3568-3579. https://doi.org/10.1021/jp710545p
  29. Lim, T., Ring, T. A., Zhang, H., 2022, Chemical Analysis of the Gallium Surface in a Physiologic Buffer, Langmuir 38:22 6817-6825. https://doi.org/10.1021/acs.langmuir.1c03281
  30. Lim, T., Zhang, H., 2021, Multilayer Carbon Nanotube/Gold Nanoparticle Composites on Gallium-Based Liquid Metals for Electrochemical Biosensing, ACS Appl. Nano Mater. 4:11 12690-12701. https://doi.org/10.1021/acsanm.1c03244
  31. Lim, T., Kim, M., Akbarian, A., Kim, J., Tresco, P. A., Zhang, H., 2022, Conductive Polymer Enabled Biostable Liquid Metal Electrodes for Bioelectronic Applications, Adv. Healthc. Mater. 11:11 2102382.
  32. Lim, T., Won, S., Kim, M., Trout, A., Kim, J., George, A., Zhang, H., 2022, Multiscale Material Engineering of a Conductive Polymer and a Liquid Metal Platform for Stretchable and Biostable Human-Machine-Interface Bioelectronic Applications, ACS Mater. Lett. 4:11 2289-2297. https://doi.org/10.1021/acsmaterialslett.2c00646
  33. Shu, Y., Lu, Q., Yuan, F., Tao, Q., Jin, D., Yao, H., Xu, Q., Hu, X., 2020, Stretchable Electrochemical Biosensing Platform Based on Ni-MOF Composite/Au Nanoparticle-Coated Carbon Nanotubes for Real-Time Monitoring of Dopamine Released from Living Cells, ACS Appl. Mater. Interfaces 12:44 49480-49488. https://doi.org/10.1021/acsami.0c16060
  34. Luan, L., Robinson, J. T., Aazhang, B., Chi, T., Yang, K., Li, X., Rathore, H., Singer, A., Yellapantula, S., Fan, Y., Yu, Z., Xie, C., 2020, Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability, Neuron 108:2 302-321. https://doi.org/10.1016/j.neuron.2020.10.011
  35. He, F., Lycke, R., Ganji, M., Xie, C., Luan, L., 2020, Ultraflexible Neural Electrodes for Long-Lasting Intracortical Recoding, iScience 23:8 101387.
  36. Mou, L., Qi. J., Tang, L., Dong, R., Xia, Y., Gao, Y., Jiang, X., 2020, Highly Stretchable and Biocompatible Liquid Metal-Elastomer Conductors for Selt-Healing Electronics, Small 16:51 2005336.
  37. Vela, L., Crandall, H., Lim, T., Zhang, F., Gibbs, A., Mitchell, A., Condon, A., Diamond, L., Zhang, H., Sanchez, B., 2023, IoMT-Enabled Stress Monitoring in a Virtual Reality Environment and at Home, IEEE Internet Things J. 10:12 10649-10661.