Abstract
As a primary technology of Industry 4.0, human-robot collaboration (HRC) requires additional measures to ensure worker safety. Previous studies on avoiding collisions between collaborative robots and workers mainly detect collisions based on sensors and cameras attached to the robot. This method requires complex algorithms to continuously track robots, people, and objects and has the disadvantage of not being able to respond quickly to changes in the work environment. The present study was conducted to implement a web-based platform that manages collaborative robots by recognizing the emotions of workers - specifically their perception of danger - in the collaborative process. To this end, we developed a web-based application that collects and stores emotion-related brain waves via a wearable device; a deep-learning model that extracts and classifies the characteristics of neutral, positive, and negative emotions; and an Internet-of-things (IoT) interface program that controls motor operation according to classified emotions. We conducted a comparative analysis of our system's performance using a public open dataset and a dataset collected through actual measurement, achieving validation accuracies of 96.8% and 70.7%, respectively.
인터스트리4.0의 주요 기술인 인간-로봇 협업은 작업자의 안전을 보장하기 위한 추가적인 조치들이 필요하다. 협동로봇과 작업자간 충돌을 회피하는 기존 방식은 주로 로봇에 부착된 센서와 카메라를 기반으로 총돌을 탐지한다. 이러한 방식은 로봇, 사람 물체를 지속적으로 추적하고 충돌회피를 위한 복잡한 알고리즘이 필요하며, 작업 환경 변화에 빠르게 대응하지 못하는 단점이 있다. 본 논문은 인간과 로봇이 협업하는 과정에서 작업자가 위험을 느낄 때의 감정을 인식하여 협동로봇과의 충돌을 방지할 수 있는 웹 기반 플랫폼을 개발하였다. 이를 위해 웨어러블 뇌파장치를 이용하여 감정 관련 뇌파를 수집하고 저장하는 웹 기반 애플리케이션을 개발하였으며, 중립/긍정/부정 감정의 특징을 추출하고 분류하는 딥러닝 모델을 제안하였다. 또한 분류된 감정에 따라 모터동작을 제어하는 사물인터넷 인터페이스 프로그램을 개발하였다. 구현된 시스템의 성능분석을 위해 공개 데이터세트와 실제 수집된 데이터 세트를 사용하여 제안한 딥러닝 모델의 성능을 분석하였다. 공개 데이터 세트의 경우 정확도는 96.8%이며, 실제 수집 데이터세트의 경우 정확도는 70.7%이다.