Acknowledgement
이 성과는 2023년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(No 2021R1F1A1046954)이며, 이 논문의 일부는 한신대학교 학술연구비 지원에 의하여 연구되었음.
References
- J. Paoli, I. Valet-Harper, A. Farquhar, and I. Sebestyen, "Ecma-376 office open xml file formats," URL https://ecma-international.org/publications-and-standards/standards/ecma-376/
- A. M. Naser, M. H. Btoush, and A. H. Hadi, "Analyzing and detecting malicious content: Docxfiles," International Journal of Computer Science and Information Security, Vol.14, No.8, pp.404, 2016.
- P. Singh, "Detection of Malicious OOXML Documents Using Domain Specific Features", Master's thesis, Indian Institute of Information Technology and Management, 2017.
- Z. Wang, J. Wang, "Applications of Machine Learning in Public Security Informatin and Resource Management", Hindawi Scientific Programming, Vol.2021, Article ID 4734187, 2021.
- Y. Liu, F. R. Yu, X. Li, H. Ji, and V. C. M. Leung, "Blockchain and machine learning for communications and networking systems," IEEE Communications Surveys & Tutorials, Vol.22, No.2, pp.1392-1431, 2020. https://doi.org/10.1109/COMST.2020.2975911
- R. Gupta, S. Tanwar, S. Tyagi, and N. Kumar, "Machine learning models for secure data analytics: a taxonomy and threat model," Computer Communications, Vol.153, pp.406-440, 2020. https://doi.org/10.1016/j.comcom.2020.02.008
- A. Cohen, N. Nissim, L. Rokach, and Y. Elovici, "Sfem: Structural feature extraction methodology for the detection of malicious office documents using machine learning methods," ExpertSystems with Applications, Vol.63, pp. 324-343, 2016. https://doi.org/10.1016/j.eswa.2016.07.010
- H. S. Lee, H.-W. Lee, "Forgery Detection Mechanism with Abnormal Structure Analysis on Office Open XML based MS-Word File," IJASC, Vol.8, No.4, 2019.
- S. Na and H.-W. Lee, "Implementation of Malicious Data Analysis and Detection System Hidden in the Slack Space of Corrupted OOXML-based MS-Office Digital Files", Advanced and Applied Convergence Letters AACL 21 (9th International Joint Conference on Convergence, IJCC2023), pp.97-103, 2023.
- A. Catsiglione, B. D'Alessio, A. D. Santis, "Hiding Information into OOXML Documents: New Steganographic Perspectives", Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, Vol.2, No.4, pp.59-83, 2011.
- S. D. l. Santos and J. Torres, "Macro malware detection using machine learning techniques - a new approach," in Proceedings of the 3rd International Conference on Information SystemsSecurity and Privacy - Volume 1: ICISSP, INSTICC. SciTePress, pp.295-302, 2017.
- S. Kim, S. Hong, J. Oh, and H. Lee, "Obfuscated vba macro detection using machine learning," in 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp.490-501, June 2018.
- FireEye, "Malicious PowerShell Detection via Machine Learning," 2018.
- B. Mahesh, "Machine Learning Algorithms - A Review", International Journal of Science and Research, Vol.9, No.1, 2020.
- W. Richert, L. P. Coelho, "Building Machine Learning Systems with Python", Packt Publishing Ltd., ISBN 978-1-78216-140-0.
- VirusTotal, https://www.virustotal.com/.
- Python. https://www.python.org/.
- scikit-learn. https://scikit-learn.org/.