참고문헌
- A. Abdelaziz, A. Fong, A. Gani, S. Khan, F. Alotaibi, and M. Khan, On software-defined wireless network (SDWN) network virtualization: Challenges and open issues, Comput. J. 60 (2017), 1510-1519. https://doi.org/10.1093/comjnl/bxx063
- A. Abujoda, D. Dietrich, P. Papadimitriou, and A. Sathiaseelan, Software-defined wireless mesh networks for internet access sharing, Comput. Netw. 93 (2015), 359-372. https://doi.org/10.1016/j.comnet.2015.09.008
- M. Bano, S. S. A. Gilani, and A. Qayyum, A comparative analysis of hybrid routing schemes for SDN based wireless mesh networks, (IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems, Exeter, UK), 2018, pp. 1189-1194.
- C. J. Bernardos, A. de la Oliva, P. Serrano, A. Banchs, L. M. Contreras, H. Jin, and J. C. Zuniga, An architecture for software defined wireless networking, IEEE Wirel. Commun. 21 (2014), no. 3, 52-61.
- T. M. Mitchell, Machine Learning, Science - Engineering - Math, McGraw-Hill, 1997.
- Y. Wang, M. Martonosi, and L.-S. Peh, Predicting link quality using supervised learning in wireless sensor networks, Mobile Comput. Commun. Rev. 11 (2007), no. 3, 71-83.
- A. Woo, T. Tong, and D. Culler, Taming the underlying challenges of reliable multihop routing in sensor networks, (Proceedings of The 1st ACM International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA), 2003, pp. 14-27.
- K. Singh and J. Kaur, Machine learning based link cost estimation for routing optimization in wireless sensor networks, Adv. Wirel. Mobile Commun. 10 (2017), no. 1, 39-49.
- M. Boushaba, A. Hafid, and A. Belbekkouche, Reinforcement learning-based best path to best gateway scheme for wireless mesh networks, (IEEE 7th International Conference on Wireless and Mobile Computing, Networking and Communications, Shanghai, China), 2011, pp. 373-379.
- M. Boushaba, A. Hafid, A. Belbekkouche, and M. Gendreau, Reinforcement learning based routing in wireless mesh networks, Wirel. Netw. 19 (2013), no. 8, 2079-2091. https://doi.org/10.1007/s11276-013-0592-y
- T.-V. T. Duong, L. H. Binh, and V. M. Ngo, Reinforcement learning for QoS-guaranteed intelligent routing in Wireless Mesh Networks with heavy traffic load, ICT Express 8 (2022), no. 1, 18-24. https://doi.org/10.1016/j.icte.2022.01.017
- Z. Mammeri, Reinforcement learning based routing in networks: Review and classification of approaches, IEEE Access 7 (2019), 55916-55950. https://doi.org/10.1109/ACCESS.2019.2913776
- DARPA, The network simulator NS2. [Online]. Available: http://www.isi.edu
- A. R. Syed, K. A. Yau, J. Qadir, H. Mohamad, N. Ramli, and S. L. Keoh, Route selection for multi-hop cognitive radio networks using reinforcement learning: An experimental study, IEEE Access 4 (2016), 6304-6324. https://doi.org/10.1109/ACCESS.2016.2613122
- M. Yin, J. Chen, X. Duan, B. Jiao, and Y. Lei, QEBR: Q-learning based routing protocol for energy balance in wireless mesh networks, (IEEE 4th International Conference on Computer and Communications, Chengdu, China), 2018, pp. 280-284.
- C. Yu, J. Lan, Z. Guo, and Y. Hu, Drom: Optimizing the routing in software-defined networks with deep reinforcement learning, IEEE Access 6 (2018), 64533-64539. https://doi.org/10.1109/ACCESS.2018.2877686
- T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, Continuous control with deep reinforcement learning, arXiv preprint, 2015. https://doi.org/10.48550/arXiv.1509.02971
- J. Rischke, P. Sossalla, H. Salah, F. H. P. Fitzek, and M. Reisslein, QR-SDN: Towards reinforcement learning states, actions, and rewards for direct flow routing in software-defined networks, IEEE Access 8 (2020), 174773-174791. https://doi.org/10.1109/ACCESS.2020.3025432
- C. Cung Trong, V. Tu, and N. Hai, An innovative solution of DSR routing mechanism based on mobile agent in MANET networks, J. Comput. Sci. Cybern. 29 (2013), no. 1, 31-42.
- C. T. Cuong, V. T. Tu, and N. T. Hai, MAR-AODV: Innovative routing algorithm in MANET based on mobile agent, (27th International Conference on Advanced Information Networking and Applications Workshops, Barcelona, Spain), 2013, pp. 62-66.
- L. H. Binh and T.-V. T. Duong, Load balancing routing under constraints of quality of transmission in mesh wireless network based on software defined networking, J. Commun. Netw. 23 (2021), no. 1, 12-22. https://doi.org/10.23919/JCN.2021.000004
- L. H. Binh and V. T. Tu, QTA-AODV: An improved routing algorithm to guarantee quality of transmission for mobile ad hoc networks using cross-layer model, J. Commun. 13 (2018), no. 7, 338-349.
- T. Liu and W. Liao, Location-dependent throughput and delay in wireless mesh networks, IEEE Trans. Vehic. Technol. 57 (2008), no. 2, 1188-1198. https://doi.org/10.1109/TVT.2007.905389
- V. Ramamurthi, A. S. Reaz, D. G. S. Dixit, and B. Mukherjee, Channel, capacity, and flow assignment in wireless mesh networks, Comput. Netw. 55 (2011), 2241-2258. https://doi.org/10.1016/j.comnet.2011.03.007
- A. Varga, Omnet++ discrete event simulation system, release 4.6, 2015. [Online]. Available: http://www.omnetpp.org
- A. Virdis and M. Kirsche, Recent advances in network simulation-The OMNeT++ environmentand its ecosystem, Springer Nature Switzerland AG, 2019.
- S. Khan, A.-S. K. Pathan, and N. A. Alrajeh, Wireless sensor networks - current status and future trends, CRC Press, 2012.
- A.-S. K. Pathan, M. M. Monowar, and S. Khan, Simulation technologies in networking and communications-Selecting the best tool for the test, CRC Press, Taylor & Francis Group, LLC, 2015.