DOI QR코드

DOI QR Code

Implementation and test results of on-channel repeater for ATSC 3.0 systems

  • Ahn, Sungjun (Media Research Division, Electronics and Telecommunications Research Institute) ;
  • Kwon, Sunhyoung (Media Research Division, Electronics and Telecommunications Research Institute) ;
  • Kwon, Hae-Chan (Media Research Division, Electronics and Telecommunications Research Institute) ;
  • Kim, Youngsu (Media Research Division, Electronics and Telecommunications Research Institute) ;
  • Lee, Jaekwon (Technical Research Institute, Korean Broadcasting System) ;
  • Shin, Yoo-Sang (Technical Research Institute, Korean Broadcasting System) ;
  • Park, Sung-Ik (Media Research Division, Electronics and Telecommunications Research Institute)
  • Received : 2021.06.10
  • Accepted : 2021.11.16
  • Published : 2022.10.10

Abstract

Despite the successful launch of Advanced Television Systems Committee (ATSC) 3.0 broadcasting worldwide, broadcasters are facing obstacles in constructing void-less large-scale single-frequency networks (SFNs). The bottleneck is the absence of decent on-channel repeater (OCR) solutions necessary for SFNs. In the real world, OCRs suffer from the maleficent feedback interference (FI) problem, which overwhelms the desired input signal. Moreover, the undesired multipaths between studio-linked transmitters and the OCR deteriorate the forward signals' quality as well. These problems crucially restrict the feasibility of conventional OCR systems, arousing the strong need for cost-worthy advanced OCR solutions. This paper presents an ATSC 3.0-specific solution of advanced OCR that solves the FI problem and refines the input signal. To this end, the FI canceler and channel equalizer functionalities are carefully implemented into the OCR system. The presented OCR system is designed to be fully compliant with the ATSC 3.0 specifications and performs a fast and efficient signal processing by exploiting the specific frame structure. The real product of ATSC 3.0 OCR is fabricated as well, and its feasibility is verified via field and laboratory experiments. The implemented solution is installed at a commercial on-air site and shown to provide substantial coverage gain in practice.

Keywords

Acknowledgement

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grants funded by the Korea government(MSIT) (No. 2019-0-00030, Development of ATSC 3.0 based on-channel repeater technology for high quality broadcasting) and (No. 2021-0-00738, Development of High-Quality Broadcast Reception Infrastructure Technology). This work was partially presented at IEEE BMSB in 2021 [55].

References

  1. L. Fay, L. Michael, D. G'omez-Barquero, N. Ammar, and M. W. Caldwell, An overview of the ATSC 3.0 physical layer specification, IEEE Trans. Broadcast. 62 (2016), no. 1, 159-171. https://doi.org/10.1109/TBC.2015.2505417
  2. R. Chernock, D. Gomez-Barquero, J. Whitaker, S. I. Park, and Y. Wu, ATSC 3.0 next generation digital TV standard-an overview and preview of the issue, IEEE Trans. Broadcast. 62 (2016), no. 1, 154-158. https://doi.org/10.1109/TBC.2016.2515542
  3. D. Gomez-Barquero, J. Y. Lee, S. Ahn, C. Akamine, D. He, J. Montalaban, J. Wang, W. Li, and Y. Wu, IEEE transactions on broadcasting special issue on: convergence of broadcast and broadband in the 5G era, IEEE Trans. Broadcast. 66 (2020), no. 2, 383-389. https://doi.org/10.1109/TBC.2020.2985493
  4. S. Ahn, S. I. Park, J. Y. Lee, B. M. Lim, S. Kwon, N. Hur, Y. Wu, L. Zhang, W. Li, and J. Kim, Mobile performance evaluation for ATSC 3.0 physical layer modulation and code combinations under TU-6 channel, IEEE Trans. Broadcast. 66 (2020), no. 4, 770-785. https://doi.org/10.1109/TBC.2020.2965062
  5. S. Ahn, S. Kwon, S. K. Ahn, and H. Jung, ATSC 3.0 for future broadcasting: features and extensibility, SET Int. J. Broadcast Eng. 6 (2020), 21-36.
  6. W. Li, L. Zhang, Y. Wu, Z. Hong, S. Lafleche, S. I. Park, S. Kown, S. Ahn, N. Hur, E. Iradier, and I. Bilbao, Integrated inter-tower wireless communications network for terrestrial broadcasting and multicasting systems, IEEE Trans. Broadcast. 67 (2021), no. 3, 570-581. https://doi.org/10.1109/TBC.2021.3081861
  7. L. Michael and D. Gomez-Barquero, Bit-Interleaved Coded Modulation (BICM) for ATSC 3.0, IEEE Trans. Broadcast. 62 (2016), no. 1, part 1, 181-188. https://doi.org/10.1109/TBC.2015.2505414
  8. S. I. Park, J. Y. Lee, S. Kwon, B. M. Lim, S. Ahn, H. M. Kim, S. Jeon, J. Lee, M. Simon, M. Aitken, and K. Gage, Performance analysis for all modulation and code combinations of ATSC 3.0 physical layer protocol, IEEE Trans. Broadcast. 62 (2019), no. 2, 197-210.
  9. S. Ahn, J. Y. Lee, B. M. Lim, H. C. Kwon, N. Hur, and S. I. Park, Multi-antenna diversity gain at terrestrial broadcasting receivers on vehicle: a coverage probability perspective, ETRI J. 43 (2021), no. 3, 400-413. https://doi.org/10.4218/etrij.2020-0242
  10. W. Kwon, J. Hwang, H. K. Yang, S. Hwang, K. Takahashi, and L Michael, The ATSC link-layer protocol (ALP): design and efficiency evaluation, IEEE Trans. Broadcast. 62 (2016), no. 1, 316-327. https://doi.org/10.1109/TBC.2015.2506983
  11. G. K. Walker, T. Stockhammer, G. Mandyam, Y. K. Wang, and C. Lo, ROUTE/DASH IP streaming-based system for delivery of broadcast, broadband, and hybrid services, IEEE Trans. Broadcast. 62 (2016), no. 1, 328-337. https://doi.org/10.1109/TBC.2016.2515539
  12. S. Ahn, S. I. Park, S. K. Ahn, H. J. Yim, S. Kwon, J. Kang, and J. Kang, Converged distribution of 5G media: opportunities of overlaid broadcast and emerging applications over dual connectivity, IEEE Trans. Broadcast, Early Access (2021). https://doi.org/10.1109/TBC.2021.3136755
  13. J. Y. Lee, S. I. Park, H. J. Yim, B. M. Lim, S. Kwon, S. Ahn, and N. Hur, IP-based cooperative services using ATSC 3.0 broadcast and broadband, IEEE Trans. Broadcast. 66 (2020), no. 2, 440-448. https://doi.org/10.1109/TBC.2020.2983301
  14. S. Ahn, S. I. Park, J. Y. Lee, N. Hur, and J. Kang, Cooperation between LDM-based terrestrial broadcast and broadband unicast: on scalable video streaming applications, IEEE Trans. Broadcast. 67 (Mar. 2021), no. 1, 2-22. https://doi.org/10.1109/TBC.2020.3028331
  15. S. Ahn, S. I. Park, J. Y. Lee, N. Hur, Y. Wu, L. Zhang, W. Li, and J. Kim, Large-scale network analysis on NOMA-aided broadcast/unicast joint transmission scenarios considering content popularity, IEEE Trans. Broadcast. 66 (2020), no. 4, 770-785. https://doi.org/10.1109/TBC.2020.2965062
  16. S. Ahn, S. I. Park, J. Y. Lee, N. Hur, and J. Kang, Fronthaul compression and precoding optimization for NOMA-based joint transmission of broadcast and unicast services in C-RAN, IEEE Trans. Broadcast. 66 (2020), no. 4, 786-799. https://doi.org/10.1109/TBC.2019.2960929
  17. H. J. Yim, S. Kim, B. M. Lim, S. I. Park, and N. Hur, Application-based targeted advertisement system for ATSC 3.0 UHD service, IEEE Trans. Broadcast. 67 (2021), no. 1, 56-67. https://doi.org/10.1109/TBC.2020.3028337
  18. Advanced Television Systems Committee ATSC Standard A/322, Physical Layer Protocol, Doc A/322, 2017.
  19. Advanced Television Systems Committee, ATSC Standard: A/324, Scheduler/Studio to Transmitter Link, Doc. A/324, 2018.
  20. W. Li, Y. Wu, S. Lafl'eche, K. Salehian, L. Zhang, A. Florea, S. I. Park, J. Y. Lee, H. M. Kim, N. Hur, and C. Regueiro, Coverage study of ATSC 3.0 under strong co-channel interference environments, IEEE Trans. Broadcast. 65 (2019), no. 1, 73-82. https://doi.org/10.1109/TBC.2018.2832446
  21. J. Montalban, L. Zhang, U. Gil, Y. Wu, I. Angulo, K. Salehian, S. I. Park, B. Rong, W. Li, H. M. Kim, and P. Angueira, Cloud transmission: system performance and application scenarios, IEEE Trans. Broadcast. 60 (2014), no. 2, 170-184. https://doi.org/10.1109/TBC.2014.2304153
  22. S. Kwon, S. I. Park, J. Y. Lee, B. M. Lim, S. Ahn, and J. Kang, Detection schemes for ATSC 3.0 transmitter identification in single frequency network, IEEE Trans. Broadcast. 66 (2020), no. 2, 229-240. https://doi.org/10.1109/TBC.2019.2941074
  23. S. Ahn, J. Kim, S.-k. Ahn, S. Kwon, S. Jeon, D. GomezBarquero, P. Angueira, D. He, C. Akamine, M. Ek, S. Simha, M. Aitken, Z. H. Hong, Y. Wu, and S-I. Park, Empirical characterization and modeling of UHF radio channel in terrestrial SFNs: Urban fading profiles. to be published in IEEE Trans. Broadcast.
  24. Y. J. Lee, J. B. Lee, S. I. Park, Y. T. Lee, H. M. Kim, and H. N. Kim, Feedback cancellation for T-DMB repeaters based on frequency-domain channel estimation, IEEE Trans. Broadcast. 57 (2011), no. 1, 114-120. https://doi.org/10.1109/TBC.2010.2086770
  25. Y. J. Lee, J. B. Lee, S. I. Park, H. M. Kim, Y. T. Lee, K. S. Son, and H. N. Kim, Correlation canceling-type feedback canceler based on decision-directed pilot symbols for T-DMB repeaters, IEEE Trans. Broadcast. 58 (2012), no. 3, 499-507. https://doi.org/10.1109/TBC.2012.2196322
  26. Y. T. Lee, S. I. Park, H. M. Eum, J. H. Seo, H. M. Kim, S. W. Kim, and J. S. Seo, A design of equalization digital on-channel repeater for single frequency network ATSC system, IEEE Trans. Broadcast. 53 (2007), no. 1, 23-37. https://doi.org/10.1109/TBC.2006.886453
  27. H. M. Kim, S. I. Park, J. H. Seo, H. Eum, Y. T. Lee, S. I. Lee, and H. Lee, Modulation and pre-equalization method to minimize time delay in equalization digital on-channel repeater, IEEE Trans. Broadcast. 54 (2008), no. 2, 249-256. https://doi.org/10.1109/TBC.2008.921371
  28. S. I. Park, Y. J. Lee, H. M. Kim, and H. N. Kim, Equalisation digital on-channel repeater with a feedback interference canceller for the advanced television systems committee terrestrial digital television system, IET Commun. 7 (2013), no. 16, 1769-1776. https://doi.org/10.1049/iet-com.2012.0607
  29. S. I. Park, H. Eum, S. R. Park, G. Kim, Y. T. Lee, H. M. Kim, and W. Oh, Novel equalization on-channel repeater with feedback interference canceller in terrestrial digital multimedia broadcasting system, ETRI J. 31 (2009), no. 4, 357-364. https://doi.org/10.4218/etrij.09.0109.0009
  30. M. Earnshaw, K. Shelby, H. Lee, Y. Oh, and M. Simon, Physical layer framing for ATSC 3.0, IEEE Trans. Broadcast. 62 (2016), no. 1, 263-270. https://doi.org/10.1109/TBC.2016.2518621
  31. S. Ahn, S. I. Park, S. Kwon, J. Y. Lee, and N. Hur, Probabilistic analysis on successive cancellation-assisted transmitter identification in SFN with randomly distributed co-channel interferers, IEEE Access 8 (2020), 56300-56311. https://doi.org/10.1109/ACCESS.2020.2981638
  32. B. M. Lim, S. Kwon, S. Ahn, S. I. Park, J. Y. Lee, H. M. Kim, N. Hur, and J. Kim, Field evaluation of transmit diversity code filter sets in ATSC 3.0 single frequency networks, IEEE Trans. Broadcast. 68 (2022), no. 1, 191-202. https://doi.org/10.1109/TBC.2021.3118228
  33. S. I. Park, W. Li, J. Y. Lee, Y. Wu, X. Wang, S. Kwon, B. M. Lim, H. M. Kim, N. Hur, L. Zhang, and J. Kim, ATSC 3.0 transmitter identification signals and applications, IEEE Trans. Broadcast. 63 (2017), no. 1, 240-249. https://doi.org/10.1109/TBC.2016.2630268
  34. S. Jeon, J. Lee, S. Kwon, B. M. Lim, S. Ahn, Y. S. Shin, and J. Y. Lee, Field trial results for ATSC 3.0 TxID transmission and detection in single frequency network of Seoul, (IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, Valencia, Spain), 2018. https://doi.org/10.1109/BMSB.2018.8436849
  35. J. Lee, S. Kwon, S. I. Park, and D. K. Kim, Transmitter identification signal detection algorithm for ATSC 3.0 single frequency networks, IEEE Trans. Broadcast. 66 (2020), no. 3, 737-743. https://doi.org/10.1109/TBC.2020.2965060
  36. U. Meabe, X. Gil, C. Li, M. Velez, and P Angueira, On the coverage and cost of HPHT versus LPLT networks for rooftop, portable, and mobile broadcast services delivery, IEEE Trans. Broadcast. 61 (2015), no. 2, 133-141. https://doi.org/10.1109/TBC.2015.2397251
  37. B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice Hall, 1985.
  38. J. M. Gorriz, J. Ramirez, S. Cruces-Alvarez, C. G. Puntonet, E. W. Lang, and D. Erdogmus, A novel LMS algorithm applied to adaptive noise cancellation, IEEE Sig. Process. Lett. 16 (2009), no. 1, 34-37. https://doi.org/10.1109/LSP.2008.2008584
  39. M. Merluzzi, P. D. Lorenzo, and S. Barabarossa, Dynamic resource allocation for wireless edge machine learning with latency and accuracy guarantees, (IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona Spain), 2020. https://doi.org/10.1109/ICASSP40776.2020.9052927
  40. A. T. Le, X. Huang, and Y. J. Guo, Analog least mean square loop with I/Q imbalance for self interference cancellation in fullduplex radios, IEEE Trans. Veh. Technol. 68 (2019), no. 10, 9848-9860. https://doi.org/10.1109/TVT.2019.2933869
  41. D. Korpi, Y. S. Choi, T. Huusari, L. Anttila, S. Talwar, and M. Valkama, Adaptive nonlinear digital self-interference cancellation for mobile inband full-duplex radio: algorithms and RF measurements, (IEEE Global Communications Conference, San Diego, CA, USA), 2015. https://doi.org/10.1109/GLOCOM.2015.7417188
  42. V. Solo, LMS: past, present and future, (IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK), 2019. https://doi.org/10.1109/ICASSP.2019.8682624
  43. Q. Zhang and C. Shu, Performance investigation of learning rate decay in LMS-based equalization, IEEE Photon. Technol. Lett. 33 (2021), no. 2, 109-112. https://doi.org/10.1109/LPT.2020.3045749
  44. Z.-Q. Wang, M. T. Manry, and J. L. Schiano, LMS learning algorithms: misconceptions and new results on convergence, IEEE Trans. Neural Netw. Learn. Syst. 11 (2000), no. 1, 47-56. https://doi.org/10.1109/72.822509
  45. S. Haykin, Adaptive Filter Theory, Prentice Hall, Englewood Cliffs NJ, 1986.
  46. K. J. Kim, S. Myung, S. I. Park, J. Y. Lee, M. Kan, Y. Shinohara, J. W. Shin, and J. Kim, Low-density parity-check codes for ATSC 3.0, IEEE Trans. Broadcast. 62 (2016), no. 1, 189-196. https://doi.org/10.1109/TBC.2016.2515538
  47. S. K. Ahn, K. J. Kim, S. Myung, S. I. Park, and K. Yang, Comparison of low-density parity-check codes in ATSC 3.0 and 5G Standards, IEEE Trans. Broadcast. 65 (2019), no. 3, 489-495. https://doi.org/10.1109/TBC.2018.2874541
  48. J. Montalban, E. Iradier, L. Fanari, P. Angueira, S. I. Park, S. Kwon, and N. Hur, Improved semi-blind channel estimation with time domain cancellation for LDM-LSI, IEEE Trans. Broadcast. 66 (2020), no. 2, 613-619. https://doi.org/10.1109/TBC.2020.2984995
  49. W. Li, Y. Wu, L. Zhang, K. Salehian, S. Lafleche, D. He, Y. Wang, Y. Guan, W. Zhang, J. Montalban, and P. Angueira, Using LDM to achieve seamless local service insertion and local program coverage in SFN environment, IEEE Trans. Broadcast. 63 (2017), no. 1, 250-259. https://doi.org/10.1109/TBC.2016.2630302
  50. H. Jeong, K. J. Kim, S. Myung, J. W. Shin, J. Kim, S. I. Park, S. Kwon, Y. Shi, and S. H. Kim, Flexible and robust transmission for physical layer signaling of ATSC 3.0, IEEE Trans. Broadcast. 62 (2016), no. 1, 204-215. https://doi.org/10.1109/TBC.2016.2518624
  51. Y. Chen, J. Zhang, and A. D. S. Jayalath, Estimation and compensation of clipping noise in OFDMA systems, IEEE Trans. Wireless Commun. 9 (2010), no. 2, 523-527. https://doi.org/10.1109/TWC.2010.02.090128
  52. S. Ahn, S. Jung, W. Lee, and J. Kang, Physical-layer security enhancement via power allocation between pilot and data jamming, (IEEE Annual Consumer Communications & Networking Conference, Las Vegas, NV, USA), 2017. https://doi.org/10.1109/CCNC.2017.7983267
  53. D. He, K. Shelby, M. Earnshaw, Y. Huang, H. Xu, and S. I. Park, System discovery and signaling transmission using bootstrap in ATSC 3.0, IEEE Trans. Broadcast. 62 (2016), no. 1, 172-180. https://doi.org/10.1109/TBC.2016.2518619
  54. Unwanted Emissions in the Out-of-Band Domain, RECSM.1541-6, ITU-R, Geneva, Switzerland, 2015.
  55. S. Kwon, S. Ahn, H. Kwon, Y. S. Kim, J. Lee, Y. S. Shin, and S. I. Park, Implementation and field verification of ATSC 3.0 onchannel repeater, (IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, Chengdu, China), 2021. https://doi.org/10.1109/BMSB53066.2021.9547165