Acknowledgement
I would like to express my gratitude to all my colleagues who guided me throughout this project. I would also like to thank my friends and family who supported me and offered deep insight into the study.
References
- T. R. Gruber, A translation approach to portable ontology specifications, Knowl. Acquisition 5 (1993), no. 2, 199-220. https://doi.org/10.1006/knac.1993.1008
- A. Singh and P. Anand, Automatic domain ontology construction mechanism, in Proc. IEEE Recent Adv. Intell. Computa. Syst. (RAICS), Trivandrum, India, Dec. 2013, pp. 304-309.
- Y. Yang, J. Du, and Y. Ping, Ontology-based intelligent information retrieval system, J. Softw. 26 (2015), no. 7, 1675-1687.
- A. Dey et al., AGROASSAM: A web-based assamese speech recognition application for retrieving agricultural commodity price and weather information, in Proc. Interspeech 2018, Hyderabad, India, Sept. 2018, pp. 3214-3215.
- S. Sahni, N. Arora, S. Sen, and N. L. Sarda, OntoAQ: Ontology-based flexible querying system for farmers, in Geospatial Infrastructure, Applications and Technologies: India Case Studies, Springer, Singapore, Singapore, 2018, pp. 201-215.
- N. Kaushik and N. Chatterjee, Automatic relationship extraction from agricultural text for ontology construction, Inf. Process. Agric. 5 (2018), no. 1, 60-73. https://doi.org/10.1016/j.inpa.2017.11.003
- V. Sundararaj, S. Muthukumar, and R. S. Kumar, An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks, Comput. Secur. 77 (2018), 277-288. https://doi.org/10.1016/j.cose.2018.04.009
- V. Sundararaj, An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm, Int. J. Intell. Eng. Syst. 9 (2016), no. 3, 117-126.
- S. Vinu, Optimal task assignment in mobile cloud computing by queue based ant-bee algorithm, Wirel. Pers. Commun. 104 (2019), no. 1, 173-197. https://doi.org/10.1007/s11277-018-6014-9
- V. Sundararaj, Optimised denoising scheme via opposition-based self-adaptive learning PSO algorithm for wavelet-based ECG signal noise reduction, Int. J. Biomed. Eng. Technol. 31 (2019), no. 4, 325. https://doi.org/10.1504/ijbet.2019.103242
- M. R. Rejeesh and P. Thejaswini, Interest point based face recognition using adaptive neuro fuzzy inference system, Multimed. Tools Appl. 78 (2019), no. 16, 22691-22710. https://doi.org/10.1007/s11042-019-7577-5
- V. Sundararaj et al., CCGPA-MPPT: Cauchy preferential crossover-based global pollination algorithm for MPPT in photovoltaic system, Prog. Photovolt. 28 (2020), no. 11, 1128-1145. https://doi.org/10.1002/pip.3315
- Y. L. Zheng et al., Construction of the ontology-based agricultural knowledge management system, J. Integr. Agric. 11 (2012) no. 5, 700-709. https://doi.org/10.1016/S2095-3119(12)60059-8
- J. Liao and L. Li. An integrated, ontology-based agricultural information system, Inf. Dev. 31 (2013), no. 2, 150-163. https://doi.org/10.1177/0266666913510716
- S. Sivamani, N. J. Bae, C. S. SHin, J. W. Park and Y. Y. Cho, An OWL-based ontology model for intelligent service in vertical farm, in Advances in Computer Science and its Applications, Springer, Berlin, Heidelberg, 2014, pp. 327-332.
- Y. Wang et al., An ontology-based approach to integration of hilly citrus production knowledge, Comput. Electron. Agric. 113 (2015), 24-43. https://doi.org/10.1016/j.compag.2015.01.009
- A. Chougule, V. K. Jha, and D. Mukhopadhyay, Ontology based system for pests and disease management of grapes in India, in Proc. IEEE Int. Conf. Adv. Comput., Bhimavaram, India, Feb. 2016, pp. 133-138.
- N. Chatterjee and N. Kaushik, RENT: Regular expression and NLP-based term extraction scheme for agricultural domain, in Proc. Int. Conf. Data Eng. Commun. Technol., 2017, pp. 511-522.
- Z. Ibrahim et al., Ontology population from textual document sources for environmental management domain based lexical patterns technique, Int. J. Acad. Res. Bus. Soc. Sci. 7 (2017), no. 12, 991-1007.
- R. Hoehndorf et al., The flora phenotype ontology (FLOPO): Tool for integrating morphological traits and phenotypes of vascular plants, J. Biomed. Semant. 7 (2016), no. 1. https://doi.org/10.1186/s13326-016-0107-8
- S. Bozkurt et al., Using automatically extracted information from mammography reports for decision-support, J. Biomed. Inform. 62 (2016), 224-231. https://doi.org/10.1016/j.jbi.2016.07.001
- N. Chatterjee, N. Kaushik, and B. Bansal, Inter-subdomain relation extraction for agriculture domain, IETE Tech. Rev. 36 (2018), 157-163. https://doi.org/10.1080/02564602.2018.1435312
- B. Sinha and S. Chandra, Development of ontology from Indian agricultural e-governance data using IndoWordNet: A semantic web approach, J. Knowl. Manag. 19 (2015), no. 1, 25-44. https://doi.org/10.1108/JKM-10-2014-0441
- N. L. Y. Saat and S. M. Noah, Rule-based approach for automatic ontology population of agriculture domain, Inform. Technol. J. 15 (2016), no. 2, 46-51. https://doi.org/10.3923/itj.2016.46.51
- A. Chougule, V. K. Jha, and D. Mukhopadhyay, AgroKanti: Location-aware decision support system for forecasting of pests and diseases in grapes, in Information Systems Design and Intelligent Applications, Springer, New Delhi, 2016, pp. 677-685.
- P. Biswas, A. Sharan, and S. Verma, Named entity recognition for agriculture domain using word net, Int. J. Comput. Math. Sci. 5 (2016), no. 10, 29-36.
- C. S. Malarkodi, E. Lex, and S. L. Devi, Named Entity Recognition for the Agricultural Domain, Res. Comput. Sci. 117 (2016), 121-132. https://doi.org/10.13053/rcs-117-1-10
- A. Goldstein, O. Raphaeli, L. Fink, A. Hetzroni, and G. A. Ravid A framework for evaluating agricultural ontologies, 2019 arXiv preprint arXiv:1906.10450.
- R. C. Jisha, S. Hari, and S. Shyba, A novel approach for document extraction based on SVD and FCA, in Proc. IEEE Int. Conf. Comput. Intell. Computi. Res., Chennai, India, 2016. https://doi.org/10.1109/ICCIC.2016.7919533
- E. Bartl, H. Rezankova, and L. Sobisek, Comparison of classical dimensionality reduction methods with novel approach based on formal concept analysis, in Lecture Notes in Computer Science, Springer, 2011, pp. 26-35.
- H. Sfar, A. H. Chaibi, A. Bouzeghoub, and H. B. Ghezala, Gold standard based evaluation of ontology learning techniques, in Proc. Annu. ACM Symp. Appl. Comput., Pisa, Italy, Apr. 2016, pp. 339-346.
- K. Benali and S. A. Rahal, OntoDTA: Ontology-guided decision tree assistance, J. Inf. Knowl. Manag. 16 (2017), no. 03, 1750031. https://doi.org/10.1142/S0219649217500319
- C. S. Namahoot, N. Panawong, and M. Bruckner, A tourism recommendation system for Thailand using semantic web rule language and K-NN algorithm, Int. Inf. Institut (Tokyo) Inf. 19 (2016), no. 7B, 3017.