Acknowledgement
This work was supported by Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean government. [21ZS1100, Core Technology Research for Self-Improving Integrated Artificial Intelligence System].
References
- D. Anguita et al., A public domain dataset for human activity recognition using smartphones, Esann 3 (2013), 3.
- O. Banos et al., Design, implementation and validation of a novel open framework for agile development of mobile health applications, Biomed. Eng. Online 14 (2015), no. S2, S6.
- D. Micucci, M. Mobilio, and P. Napoletano, Unimib shar: A dataset for human activity recognition using acceleration data from smartphones, Appl. Sci. 7 (2017), no. 10, 1101. https://doi.org/10.3390/app7101101
- A. Reiss and D. Stricker, Introducing a new benchmarked dataset for activity monitoring, in Proc. Int. Symp. Wearable Comput., (Newcastle, UK), June 2012, pp. 108-109.
- D. Roggen et al., Collecting complex activity datasets in highly rich networked sensor environments, in Proc. Int. Conf. Netw. Sens. Syst. (INSS), (Kassel, Germany), June 2010, pp. 233-240.
- S. Chung et al., Sensor data acquisition and multimodal sensor fusion for human activity recognition using deep learning, Sensors 19 (2019), no. 7, 1716. https://doi.org/10.3390/s19071716
- C. Y. Jeong and M. Kim, An energy-efficient method for human activity recognition with segment-level change detection and deep learning, Sensors 19 (2019), no. 17, article no. 3688.
- O. F. Ince et al., Human activity recognition with analysis of angles between skeletal joints using a rgb-depth sensor, ETRI J. 42 (2020), no. 1, 78-89. https://doi.org/10.4218/etrij.2018-0577
- M. Kim and C. Y. Jeong, Label-preserving data augmentation for mobile sensor data, Multidimens. Syst. Signal Process. 32 (2021), no. 1, 115-129. https://doi.org/10.1007/s11045-020-00731-2
- C. Gurrin, A. F. Smeaton, and A. R. Doherty, Lifelogging: Personal big data, Found. Trends Inf. Ret. 8 (2014), no. 1, 1-125, doi:10.1561/1500000033.
- A. J. Sellen and S. Whittaker, Beyond total capture: A constructive critique of lifelogging, Commun. ACM 53 (2010), no. 5, 70-77, doi:10.1145/1735223.1735243.
- SIGMM, Lsc '18: Proceedings of the 2018 ACM Workshop on the Lifelog Search Challenge, ACM, New York, NY, USA, 2018.
- C. Gurrin et al., LTA 2016: The first workshop on lifelogging tools and applications, in Proc. ACM Int. Conf. Multimed. (New York, NY, USA), Oct. 2016, pp. 1487-1488.
- D. T. Dang Nguyen et al., Overview of imageCLEFlifelog 2019: Solve my life puzzle and lifelog moment retrieval, in Proc. Conf. Labs Eval. Forum. (Lugano, Switzerland), Sept. 2019.
- C. Gurrin et al., Overview of the NTCIR-14 lifelog-3 task, in Proc. NTCIR Conf. (Tokyo, Japan), June 2019, pp. 14-26.
- Y. Vaizman, K. Ellis, and G. Lanckriet, Recognizing detailed human context in the wild from smartphones and smartwatches, IEEE Pervasive Comput. 16 (2017), no. 4, 62-74. https://doi.org/10.1109/MPRV.2017.3971131
- Y. Vaizman et al., Extrasensory app: Data collection in-the-wild with rich user interface to self-report behavior, in Proc. CHI Conf. Hum. Factors Comput. Syst. (New York, NY, USA), Apr. 2018, pp. 1-12.
- Y. Vaizman, N. Weibel, and G. Lanckriet, Context recognition in-the-wild: Unified model for multi-modal sensors and multi-label classification, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1 (2018), no. 4, 1-22.
- G. M. Harari et al., Smartphone sensing methods for studying behavior in everyday life, Curr. Opin. Behav. Sci. 18 (2017), 83-90. https://doi.org/10.1016/j.cobeha.2017.07.018
- L. A. Clark and D. Watson, Mood and the mundane: Relations between daily life events and self-reported mood, J. Pers. Soc. Psychol. 54 (1988), no. 2, 296-308. https://doi.org/10.1037/0022-3514.54.2.296
- P. R. Giacobbi, H. A. Hausenblas, and N. Frye, A naturalistic assessment of the relationship between personality, daily life events, leisure-time exercise, and mood, Psychol. Sport Exerc. 6 (2005), no. 1, 67-81. https://doi.org/10.1016/j.psychsport.2003.10.009
- S. N. Rogers et al., The addition of mood and anxiety domains to the university of washington quality of life scale, Head & Neck: J. Sci. Specialties Head Neck 24 (2002), no. 6, 521-529. https://doi.org/10.1002/hed.10106
- K. J. Stewart et al., Are fitness, activity, and fatness associated with health-related quality of life and mood in older persons?, J. Cardiopulm. Rehabil. Prev. 23 (2003), no. 2, 115-121. https://doi.org/10.1097/00008483-200303000-00009
- K. H. Kim, S. W. Bang, and S. R. Kim, Emotion recognition system using short-term monitoring of physiological signals, Med. Biol. Eng. Comput. 42 (2004), no. 3, 419-427. https://doi.org/10.1007/BF02344719
- L. Shu et al., A review of emotion recognition using physiological signals, Sensors 18 (2018), no. 7, 2074. https://doi.org/10.3390/s18072074
- J. Kim and E. Andre, Emotion recognition based on physiological changes in music listening, IEEE Trans. Pattern Anal. Mach. Intell. 30 (2008), no. 12, 2067-2083. https://doi.org/10.1109/TPAMI.2008.26
- S. Koelstra et al., Deap: A database for emotion analysis; using physiological signals, IEEE Trans. Affect. Comput. 3 (2011), no. 1, 18-31. https://doi.org/10.1109/T-AFFC.2011.15
- T. Song et al., Mped: A multi-modal physiological emotion database for discrete emotion recognition, IEEE Access 7 (2019), 12177-12191. https://doi.org/10.1109/access.2019.2891579
- M.-F. Shao et al., Sleep quality and quality of life in female shift-working nurses, J. Adv. Nurs. 66 (2010), no. 7, 1565-1572. https://doi.org/10.1111/j.1365-2648.2010.05300.x
- J. Zeitlhofer et al., Sleep and quality of life in the austrian population, Acta Neurol. Scand. 102 (2000), no. 4, 249-257. https://doi.org/10.1034/j.1600-0404.2000.102004249.x
- B. Bower et al., Poor reported sleep quality predicts low positive affect in daily life among healthy and mood-disordered persons, J. Sleep Res. 19 (2010), no. 2, 323-332. https://doi.org/10.1111/j.1365-2869.2009.00816.x
- D. K. Thomsen et al., Rumination-relationship with negative mood and sleep quality, Pers. Individ. Differ. 34 (2003), no. 7, 1293-1301. https://doi.org/10.1016/S0191-8869(02)00120-4
- K. J. Reid et al., Aerobic exercise improves self-reported sleep and quality of life in older adults with insomnia, Sleep Med. 11 (2010), no. 9, 934-940. https://doi.org/10.1016/j.sleep.2010.04.014
- S. Ancoli-Israel et al., The role of actigraphy in the study of sleep and circadian rhythms, Sleep 26 (2003), no. 3, 342-392. https://doi.org/10.1093/sleep/26.3.342
- A. D. Krystal and J. D. Edinger, Measuring sleep quality, Sleep Med. 9 (2008), no. 1, S10-S17. https://doi.org/10.1016/S1389-9457(08)70011-X
- D. J. Buysse et al., The pittsburgh sleep quality index: A new instrument for psychiatric practice and research, Psychiatry Res. 28 (1989), no. 2, 193-213. https://doi.org/10.1016/0165-1781(89)90047-4
- G. Landry, J. Best, and T. Liu-Ambrose, Measuring sleep quality in older adults: A comparison using subjective and objective methods, Front. Aging Neurosci. 7 (2015), article no. 166.
- S. Shiffman, A. A. Stone, and M. R. Hufford, Ecological momentary assessment, Annu. Rev. Clin. Psychol. 4 (2008), 1-32. https://doi.org/10.1146/annurev.clinpsy.3.022806.091415
- D.-T. Dang-Nguyen et al., in Proc. Int. Workshop Content-based Multimed. Indexing (New York, NY, USA), June 2017, pp. 1-6.
- C. Gurrin et al., Ntcir lifelog: The first test collection for lifelog research, in Proc. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr. (New York, NY, USA), July 2016, pp. 705-708.
- D.-T. Dang-Nguyen et al., Overview of imageCLEFlifelog 2017: Lifelog retrieval and summarization, in Proc. ImageCLEF 2017 (Dublin, Ireland), Sept. 2017.
- D.-T. Dang-Nguyen et al., Overview of imageCLEFlifelog 2018: Daily living understanding and lifelog moment retrieval, in Proc. Conf. Labs Eval. Forum. (Avignon, France), Sept. 2018.
- J. A. Russell, A circumplex model of affect, J. Pers. Soc. Psychol. 39 (1980), no. 6, article no. 1161.
- Empatica, E4 wristband: Real-time physiological signals, Available from https://empatica.com/research/e4 [last accessed March 2021].
- Withings, Sleep tracking mat, Available from https://www.withings.com/kr/en/sleep [last accessed March 2021].
- M. Barzegar, A. Sadeghi-Niaraki, and M. Shakeri, Spatial experience based route finding using ontologies, ETRI J. 42 (2020), no. 2, 247-257. https://doi.org/10.4218/etrij.2017-0246
- F. Bergadano, Keyed learning: An adversarial learning framework-formalization, challenges, and anomaly detection applications, ETRI J. 41 (2019), no. 5, 608-618. https://doi.org/10.4218/etrij.2019-0140
- J. K. Bii, R. Rimiru, and R. W. Mwangi, Adaptive boosting in ensembles for outlier detection: Base learner selection and fusion via local domain competence, ETRI J. 42 (2020), no. 6, 886-898. https://doi.org/10.4218/etrij.2019-0205