DOI QR코드

DOI QR Code

Energy-efficient mmWave cell-free massive MIMO downlink transmission with low-resolution DACs and phase shifters

  • Seung-Eun, Hong (Mobile Communication Research Division, Electronics and Telecommunications Research Institute) ;
  • Jee-Hyeon, Na (Mobile Communication Research Division, Electronics and Telecommunications Research Institute)
  • Received : 2022.05.24
  • Accepted : 2022.10.21
  • Published : 2022.12.10

Abstract

The mmWave cell-free massive MIMO (CFmMIMO), combining the advantages of wide bandwidth in the mmWave frequency band and the high- and uniform-spectral efficiency of CFmMIMO, has recently emerged as one of the enabling technologies for 6G. In this paper, we propose a novel framework for energy-efficient mmWave CFmMIMO systems that uses low-resolution digital-analog converters (DACs) and phase shifters (PSs) to introduce lowcomplexity hybrid precoding. Additionally, we propose a heuristic pilot allocation scheme that makes the best effort to slash some interference from copilot users. The simulation results show that the proposed hybrid precoding and pilot allocation scheme outperforms the existing schemes. Furthermore, we reveal the relationship between the energy and spectral efficiencies for the proposed mmWave CFmMIMO system by modeling the whole network power consumption and observe that the introduction of low-resolution DACs and PSs is effective in increasing the energy efficiency by compromising the spectral efficiency and the network power consumption.

Keywords

Acknowledgement

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2018-0-01659,5G Open Intelligence-Defined RAN [ID-RAN] Technique based on 5G New Radio).

References

  1. Recommendation ITU-T L.1470, Greenhouse gas emissions trajectories for the information and communication technology sector compatible with the UNFCCC Paris Agreement, 2020.
  2. T. Hatt and E. Kolta, 5G energy efficiencies: Green is the new black, GSMA Intelligence, 2020.
  3. Recommendation ITU-R M.2410-0, Minimum requirements related to technical performance for IMT-2020 radio interface (s), 2017.
  4. ETSI ES 203 228, Environmental Engineering (EE): Assessment of mobile network energy efficiency, 2020.
  5. O. T. Demir, E. Bjornson, and L. Sanguinetti, Foundations of user-centric cell-free massive MIMO, FNT Signal Process. 14 (2021), no. 3-4, 162-472. https://doi.org/10.1561/2000000109
  6. I. F. Akyildiz, A. Kak, and S. Nie, 6G and beyond: The future of wireless communications systems, IEEE Access 8 (2020), 133995-134030. https://doi.org/10.1109/access.2020.3010896
  7. H. Yang and T. L. Marzetta, Energy efficiency of massive MIMO: Cell-free vs. cellular, (Proc. IEEE Vehicular Technology Conference, Porto, Portugal), 2018. https://doi.org/10.1109/VTCSpring.2018.8417645
  8. H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, Cell-free massive MIMO versus small cells, IEEE Trans. Wirel. Commun. 16 (2017), no. 3, 1834-1850. https://doi.org/10.1109/TWC.2017.2655515
  9. E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, and B. D. Rao, Precoding and power optimization in cell-free massive MIMO systems, IEEE Trans. Wirel. Commun. 16 (2017), no. 7, 4445-4459. https://doi.org/10.1109/TWC.2017.2698449
  10. G. Interdonato, E. Bjornson, H. Quoc Ngo, P. Frenger, and E. G. Larsson, Ubiquitous cell-free massive MIMO communications, J. Wireless Com. Netw. 1 (2019), 1-13.
  11. G. Femenias and F. Riera-Palou, Cell-free millimeter-wave massive MIMO systems with limited fronthaul capacity, IEEE Access 7 (2019), 44596-44612.
  12. S.-E. Hong, On the effect of shadowing correlation and pilot assignment on hybrid precoding performance for cell-free mmWave massive MIMO UDN system, ICT Expr. 7 (2021), no. 1, 60-70. https://doi.org/10.1016/j.icte.2021.01.010
  13. S. Jacobsson, G. Durisi, M. Coldrey, and C. Studer, Linear precoding with low-resolution DACs for massive MU-MIMO-OFDM downlink, IEEE Trans. Wirel. Commun. 18 (2019), 1595-1609. https://doi.org/10.1109/twc.2019.2894120
  14. Y. Zhang, Cao H, Zhou M, Qiao X, Wu S, Yang L, Cell-Free massive MIMO with few-bit ADCs/DACs: AQNM versus Bussgang, (Proc. IEEE Vehicular Technology Conference, Antwerp, Belguim), 2020. https://doi.org/10.1109/VTC2020-Spring48590.2020.9128942
  15. I. Kim, and J. Choi, Performance of cell-free mmwave massive MIMO fystems with fronthaul compression and DAC quantization, (IEEE Wireless Communications and Networking Conference Workshops, Nanjing, China), 2021. https://doi.org/10.1109/WCNCW49093.2021.9420030
  16. E. Bjornson, L. Sanguinetti, J. Hoydis, and M. Debbah, Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Trans. Wirel. Commun. 14 (2015), no. 6, 3059-3075. https://doi.org/10.1109/TWC.2015.2400437
  17. A. Papazafeiropoulos, H. Q. Ngo, P. Kourtessis, S. Chatzinotas, and J. M. Senior, Towards optimal energy efficiency in cell-free massive MIMO systems, IEEE Trans. Green Commun. Netw. 5 (2021), no. 2, 816-831. https://doi.org/10.1109/TGCN.2021.3059206
  18. J. Garcia-Morales, G. Femenias, and F. Riera-Palou, Energy-efficient access-point sleep-mode techniques for cell-free mmwave massive MIMO networks with non-uniform spatial traffic density, IEEE Access 8 (2020), 137587-137605. https://doi.org/10.1109/access.2020.3012199
  19. M. Alonze, S. Buzzi, A. Zappone, and C. D'Elia, Energyefficient power control in cell-free and user-centric massive MIMO at millimeter wave, IEEE Trans. Green Commun. Netw. 3 (2019), 651-663. https://doi.org/10.1109/tgcn.2019.2908228
  20. T. Van Chien, E. Bjornson, and E. G. Larsson, Joint power allocation and load balancing optimization for energy-efficient cellfree massive MIMO networks, IEEE Trans. Wirel. Commun. 19 (2020), no. 10, 6798-6812. https://doi.org/10.1109/twc.2020.3006083
  21. M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip, Millimeter wave channel modeling and cellular capacity evaluation, IEEE J. Sel. Areas Commun. 32 (2014), no. 6, 1164-1179. https://doi.org/10.1109/JSAC.2014.2328154
  22. M. K. Samimi and T. S. Rappaport, Ultra-wideband statistical channel model for non line of sight millimeter-wave urban channels, (IEEE Global Communications Conference, Austin, TX, USA), 2014, pp. 3483-3489.
  23. L. N. Ribeiro, S. Schwarz, M. Rupp, and A. L. F. Almeida, Energy efficiency of mmWave massive MIMO precoding with low-resolution DACs, IEEE J. Sel. Top. Signal Process. 12 (2018), no. 2, 298-312. https://doi.org/10.1109/jstsp.2018.2824762
  24. S. Park and R.W. Heath, Spatial channel covariance estimation for Spatial channel covariance estimation for the hybrid MIMO architecture the hybrid MIMO architecture, (Proc. Asilomar), Nov. 2016.
  25. Q. T. Demir and E. Bjornson, The Bussgang decomposition of nonlinear systems-Basic theory and MIMO extensions, IEEE Signal Process. Mag. 38 (2021), no. 1, 131-136. https://doi.org/10.1109/MSP.2020.3025538
  26. C. Feng, W. Shen, X. Gao, J. An, and L. Hanzo, Dynamic hybrid precoding relying on twin-resolution phase shifters in millimeter-wave communication systems, IEEE Trans. Wirel. Commun. 20 (2021), no. 2, 812-826. https://doi.org/10.1109/TWC.2020.3028433
  27. D. Pepe and D. Zito, Two mm-wave vector modulator active phase shifters with novel IQ generator in 28 nm FDSOI CMOS, IEEE J. Solid State Circuits 52 (2017), no. 2, 344-356. https://doi.org/10.1109/JSSC.2016.2605659
  28. E. Sung and S. Hong, A wideband W-band 6-bit active phase shifter in 28-nm RF CMOS, (IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Nanjing, China), 2019. https://doi.org/10.1109/RFIT.2019.8929156
  29. R. Mendez-Rial, C. Rusu, N. Gonzalez-Prelcic, A. Alkhateeb, and R. W. Heath, Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches? IEEE Access 4 (2016), 247-267. https://doi.org/10.1109/ACCESS.2015.2514261
  30. T. Lien, J. Cong, Y. Zhu, J. Zhang, and K. Ben Letaief, Hybrid beamforming for millimeter wave systems using the MMSE criterion, IEEE Trans. Commun. 67 (2019), no. 5, 3693-3708. https://doi.org/10.1109/tcomm.2019.2893632
  31. G. H. Golub and C. F. Van Loan, Matrix computation, 3rd ed., JHU Press, Baltimore, MD, USA, 2012.