DOI QR코드

DOI QR Code

Trends on Visual Object Tracking Using Siamese Network

Siamese 네트워크 기반 영상 객체 추적 기술 동향

  • Published : 2022.02.01

Abstract

Visual object tracking can be utilized in various applications and has attracted considerable attention in the field of computer vision. Visual object tracking technology is classified in various ways based on the number of tracking objects and the methodologies employed for tracking algorithms. This report briefly introduces the visual object tracking challenge that contributes to the development of single object tracking technology. Furthermore, we review ten Siamese network-based algorithms that have attracted attention, owing to their high tracking speed (despite the use of neural networks). In addition, we discuss the prospects of the Siamese network-based object tracking algorithms.

Keywords

Acknowledgement

본 연구 논문은 한국전자통신연구원 연구운영지원사업의 일환으로 수행되었음[21ZD1130, 지능제어기반 스마트 기계 및 로봇 기술 개발].

References

  1. L. Bertinetto et al., "Fully-convolutional siamses networks for object tracking," in Proc. Eur. Conf. Comput. Vis. (ECCV), (Amsterdam, Netherlands), Oct. 2016, pp. 850-865.
  2. M. Kristan et al., "The visual object tracking VOT2013 challenge results," in Proc. IEEE Int. Conf. Comput. Vis. Workshops, (Sydney, Australia), Dec. 2013, pp. 93-111.
  3. M. Kristan et al., "The visual object tracking VOT2014 challenge results," in Proc. Eur. Conf. Comput. Vis. (ECCV), (Zurich, Switzerland), Sept. 2014, pp. 191-217.
  4. M. Kristan et al., "The visual object tracking VOT2015 challenge results," in Proc. IEEE Int. Conf. Comput. Vis. Workshops (ICCV), (Santiago, Chile), Dec. 2015, pp. 1-23.
  5. M. Kristan et al., "The visual object tracking VOT2016 challenge results," in Proc. Eur. Conf. Comput. Vis. (ECCV), (Amsterdam, Netherlands), Oct. 2016, pp. 777-823.
  6. M. Kristan et al., "The visual object tracking VOT2017 challenge results," in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), (Venice, Italy), Oct. 2017, pp. 1949-1972.
  7. M. Kristan et al., "The sixth visual object tracking VOT2018 challenge results," in Proc. Eur. Conf. Comput. Vis. (ECCV), (Munich, Germany), Sept. 2018.
  8. M. Kristan et al., "The seventh visual object tracking VOT2019 challenge results," in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW), (Seoul, Republic of Korea), Oct. 2019, pp. 2206-2241.
  9. M. Kristan et al., "The eighth visual object tracking VOT2020 challenge results," in Proc. Eur. Conf. Comput. Vis. (ECCV), (Glasgow, UK), Aug. 2020, pp. 547-601.
  10. M. Kristan et al., "The ninth visual object tracking VOT2021 challenge results," in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 2711-2738.
  11. Y. Wu et al., "Object tracking benchmark," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, 2015, pp. 1834-1848. https://doi.org/10.1109/TPAMI.2014.2388226
  12. M. Muller et al., "TrackingNet: A large-scale dataset and benchmark for object tracking in the wild," in Proc. Eur. Conf. Comput. Vis. (ECCV), (Munich, Germany), Sept. 2018, pp. 300-317.
  13. H. Fan et al., "LaSOT: A high-quality benchmark for large-scale single object tracking," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), (Long Beach, CA, USA), June 2019, pp. 5374-5383.
  14. L. Huang et al., "GOT-10k: A large high-diversity benchmark for generic object tracking in the wild," IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 5, 2021, pp. 1562-1577. https://doi.org/10.1109/TPAMI.2019.2957464
  15. Z. Kalal et al., "Tracking-learing-detection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, 2011, pp. 1409-1422. https://doi.org/10.1109/TPAMI.2011.239
  16. J.F. Henriques et al., "High-speed tracking with kernelized correlation filters," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 3, 2015, pp. 583-596. https://doi.org/10.1109/TPAMI.2014.2345390
  17. H. Nam and B. Han, "Learning multi-domain convolutional neural networks for visual tracking," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), (Las Vegas, NV, USA), June 2016, pp. 4293-4302.
  18. O. Russakovsky et al., "ImageNet large scale visual recognition challenge," Int. J. Comput. Vis., vol. 115, 2015, pp. 211-252. https://doi.org/10.1007/s11263-015-0816-y
  19. B. Li et al., "High performance visual tracking with siamese region proposal network," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), (Salt Lake Sity, UT, USA), June 2018, pp. 8971-8980.
  20. Z. Zhu et al., "Distractor-aware siamese networks for visual object tracking," in Proc. Eur. Conf. Comput. Vis. (ECCV), (Munich, Germany), Sept. 2018.
  21. A. Krizhevsky et al., "ImageNet classification with deep convolutional neural networks," in Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS), (Lake Taho, NV, USA), Dec. 2012, pp. 1097-1105.
  22. K. He et al., "Deep residual learning for image recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), (Las Vegas, NV, USA), June 2016, pp. 770-778.
  23. B. Li et al., "SiamRPN++: Evolution of siamese visual tracking with very deep networks," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), (Long Beach, CA, USA), June 2019, pp. 4282-4291.
  24. Z. Zhang et al., "Deeper and wider siamese networks for real-time visual tracking," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), (Long Beach, CA, USA), June 2019, pp. 4591-4600.
  25. C. Szegedy et al., "Going deeper with convolutions," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), (Boston, MA, USA), June 2015, pp. 1-9.
  26. S. Xie et al., "Aggregated residual transformations for deep neural networks," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), (Honolulu, HI, USA), July 2017, pp. 1492-1500.
  27. Q. Wang et al., "Fast online object tracking and segmentation: A unifying approach," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), (Long Beach, CA, USA), June 2019, pp. 1328-1338.
  28. L. Zhang et al., "Learning the model update for siamese trackers," in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), (Seoul, Republic of Korea), Oct. 2019, pp. 4010-4019.
  29. Y. Yu et al., "Deformable siamese attention networks for visual object tracking," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), June 2020, pp. 6728-6737.
  30. Z. Tian et al., "FCOS: Fully convolutional one-stage object detection," in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), (Seoul, Republic of Korea), Oct. 2019, pp. 9627-9636.
  31. Z. Chen et al., "Siamese box adaptive network by visual tracking," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), June 2020, pp. 6668-6677.
  32. Z. Zhang et al., "Ocean: Object-aware anchor-free tracking," in Proc. Eur. Conf. Comput. Vis. (ECCV), (Glasgow, UK), Aug. 2020, pp. 771-787.
  33. J. Dai et al., "Deformable convolution networks," in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), (Venice, Italy), Oct. 2017, pp. 764-773.
  34. H. Zhang et al., "Context encoding for semantic segmentation," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), (Salt Lake Sity, UT, USA), June 2018, pp. 7151-7160.
  35. N. Wang et al., "Transformer meets tracker: Exploiting temporal context for robust visual tracking," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), June 2021, pp. 1571-1580.
  36. B. Yan et al., "LightTrack: Finding lightweight neural networks for object tracking via one-shot architecture search," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), June 2021, pp. 15180-15189.