DOI QR코드

DOI QR Code

Optically Managing Thermal Energy in High-power Yb-doped Fiber Lasers and Amplifiers: A Brief Review

  • Yu, Nanjie (Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign) ;
  • Ballato, John (Department of Materials Science and Engineering, Clemson University) ;
  • Digonnet, Michel J.F. (Edward L. Ginzton Laboratory, Stanford University) ;
  • Dragic, Peter D. (Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign)
  • 투고 : 2022.05.22
  • 심사 : 2022.09.19
  • 발행 : 2022.12.25

초록

Fiber lasers have made remarkable progress over the past three decades, and they now serve far-reaching applications and have even become indispensable in many technology sectors. As there is an insatiable appetite for improved performance, whether relating to enhanced spatio-temporal stability, spectral and noise characteristics, or ever-higher power and brightness, thermal management in these systems becomes increasingly critical. Active convective cooling, such as through flowing water, while highly effective, has its own set of drawbacks and limitations. To overcome them, other synergistic approaches are being adopted that mitigate the sources of heating at their roots, including the quantum defect, concentration quenching, and impurity absorption. Here, these optical methods for thermal management are briefly reviewed and discussed. Their main philosophy is to carefully select both the lasing and pumping wavelengths to moderate, and sometimes reverse, the amount of heat that is generated inside the laser gain medium. First, the sources of heating in fiber lasers are discussed and placed in the context of modern fiber fabrication methods. Next, common methods to measure the temperature of active fibers during laser operation are outlined. Approaches to reduce the quantum defect, including tandem-pumped and short-wavelength lasers, are then reviewed. Finally, newer approaches that annihilate phonons and actually cool the fiber laser below ambient, including radiation-balanced and excitation-balanced fiber lasers, are examined. These solutions, and others yet undetermined, especially the latter, may prove to be a driving force behind a next generation of ultra-high-power and/or ultra-stable laser systems.

키워드

과제정보

Authors are grateful for the continued support from our colleagues, collaborators, and friends, especially (in alpha-betical order) Martin Bernier, Magnus Engholm, Thomas Hawkins, Jennifer Knall, Pierre-Baptiste Vigneron, and Mingye Xiong.

참고문헌

  1. IPG Photonics, "High power CW fiber lasers," (IPG Photonics), https://www.ipgphotonics.com/en/products/lasers/high-power-cw-fiber-lasers (Accessed date: Sept. 1, 2022).
  2. P. Even and D. Pureur, "High power double clad fiber lasers: a review," Proc. SPIE 4638, 1-12 (2002).
  3. A. Galvanauskas, "High power fiber lasers," Opt. Photonics News 15, 42-47 (2004). https://doi.org/10.1364/OPN.15.7.000042
  4. D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010). https://doi.org/10.1364/JOSAB.27.000B63
  5. P. Zhou, X. Wang, Y. Ma, H. Lu, and Z. Liu, "Review on recent progress on mid-infrared fiber lasers," Laser Phys. 22, 1744-1751 (2012). https://doi.org/10.1134/S1054660X12110199
  6. C. Jauregui, J. Limpert, and A. Tunnermann, "High-power fibre lasers," Nat. Photonics 7, 861-867 (2013). https://doi.org/10.1038/nphoton.2013.273
  7. M. N. Zervas, "High power ytterbium-doped fiber lasers-Fundamentals and applications," Int. J. Mod. Phys. B 28, 1442009 (2014). https://doi.org/10.1142/S0217979214420090
  8. M. N. Zervas and C. A. Codemard, "High power fiber lasers: a review," IEEE J. Sel. Top. Quantum Electron. 20, 219-241 (2014). https://doi.org/10.1109/JSTQE.2014.2321279
  9. Z. Liu, X. Jin, R. Su, P. Ma, and P. Zhou, "Development status of high power fiber lasers and their coherent beam combination," Sci. China Inf. Sci. 62, 41301 (2019). https://doi.org/10.1007/s11432-018-9742-0
  10. J. D. Minelly, E. R. Taylor, K. P. Jedrzejewski, J. Wang, and D. N. Payne, "Laser-diode pumped neodymium-doped fibre laser with output power >1 W," in Conference on Lasers and Electro-Optics (Optica Publishing Group, 1992), paper CWE6.
  11. H. Po, J. D. Cao, B. M. Laliberte, R. A. Minns, R. F. Robinson, B. H. Rockney, R. R. Tricca, and Y. H. Zhang, "High power neodymium-doped single transverse mode fibre laser," Electron. Lett. 29, 1500-1501 (1993). https://doi.org/10.1049/el:19931000
  12. H. Zellmer, A. Tunnermann, H. Welling, and V. Reichel, "Double-clad fiber laser with 30 W output power," in Optical Amplifiers and Their Applications (Optica Publishing Group, 1997), paper FAW18.
  13. M. M. Bubnov, A. N. Gur'yanov, K. V Zotov, L. D. Iskhakova, S. V Lavrishchev, D. S. Lipatov, M. E. Likhachev, A. A. Rybaltovsky, V. F. Khopin, M. V Yashkov, and E. M. Dianov, "Optical properties of fibres with aluminophosphosilicate glass cores," Quantum Electron. 39, 857-862 (2009). https://doi.org/10.1070/QE2009v039n09ABEH014007
  14. A. J. Boyland, A. S. Webb, S. Yoo, F. H. Mountfort, M. P. Kalita, R. J. Standish, J. K. Sahu, D. J. Richardson, and D. N. Payne, "Optical fiber fabrication using novel gas-phase deposition technique," J. Light. Technol. 29, 912-915 (2011). https://doi.org/10.1109/JLT.2011.2109371
  15. A. Langner, M. Such, G. Schotz, S. Grimm, F. Just, M. Leich, C. Muhlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, "New developments in high power fiber lasers based on alternative materials," Proc. SPIE 7914, 79141U (2011).
  16. S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, "A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology," Laser Phys. 24, 035103 (2014). https://doi.org/10.1088/1054-660X/24/3/035103
  17. M. Saha, S. Das Chowdhury, N. K. Shekhar, A. Pal, M. Pal, C. Guha, and R. Sen, "Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications," IEEE Photonics Technol. Lett. 28, 1022-1025 (2016). https://doi.org/10.1109/LPT.2016.2524040
  18. F. Gonthier, L. Martineau, N. Azami, M. Faucher, F. Seguin, D. Stryckman, and A. Villeneuve, "High-power All-Fiber components: the missing link for high-power fiber lasers," Proc. SPIE 5335, 266-276 (2004).
  19. H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, S. Desmoulins, M. Zervas, J. Kirchhof, S. Unger, S. Jetschke, T. Peschel, and T. Schreiber, "Fibers and fiber-optic components for high-power fiber lasers," Proc. SPIE 7914, 791414 (2011).
  20. D. Stachowiak, "High-power passive fiber components for all-fiber lasers and amplifiers application-design and fabrication," Photonics 5, 38 (2018). https://doi.org/10.3390/photonics5040038
  21. D. F. Welch, "A brief history of high-power semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1470-1477 (2000). https://doi.org/10.1109/2944.902203
  22. R. K. Huang, B. Chann, L. J. Missaggia, J. P. Donnelly, C. T. Harris, G. W. Turner, A. K. Goyal, T. Y. Fan, and A. Sanchez-Rubio, "High-brightness wavelength beam combined semiconductor laser diode arrays," IEEE Photonics Technol. Lett. 19, 209-211 (2007). https://doi.org/10.1109/LPT.2006.890717
  23. V. Gapontsev, N. Moshegov, I. Berezin, A. Komissarov, P. Trubenko, D. Miftakhutdinov, I. Berishev, V. Chuyanov, O. Raisky, and A. Ovtchinnikov, "Highly-efficient high-power pumps for fiber lasers," Proc. SPIE 10086, 1008604 (2017).
  24. R. Paoletti, S. Codato, C. Coriasso, F. Gaziano, P. Gotta, A. Maina, P. De Melchiorre, G. Meneghini, G. Morello, G. Pippione, E. Riva, M. Rosso, A. Stano, P. Sanna, and M. Gattiglio, "350 W high-brightness multi-emitter semiconductor laser module emitting at 976 nm," Proc. SPIE 11668, 1166805 (2021).
  25. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, "Efficient Yb laser fibers with low photodarkening by optimization of the core composition," Opt. Express 16, 15540-15545 (2008). https://doi.org/10.1364/OE.16.015540
  26. Changgeng Ye, L. Petit, J. J. Koponen, I-Ning Hu, and A. Galvanauskas, "Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers," IEEE J. Sel. Top. Quantum Electron. 20, 188-199 (2014). https://doi.org/10.1109/JSTQE.2014.2310657
  27. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and M. Jager, "Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects," Opt. Express 24, 13009-13022 (2016). https://doi.org/10.1364/OE.24.013009
  28. M. Engholm, M. Tuggle, C. Kucera, T. Hawkins, P. Dragic, and J. Ballato, "On the origin of photodarkening resistance in Yb-doped silica fibers with high aluminum concentration," Opt. Mater. Express 11, 115-126 (2021). https://doi.org/10.1364/ome.413766
  29. J. Koponen, M. Laurila, M. Soderlund, J. J. Montiel i Ponsoda, and A. Iho, "Benchmarking and measuring photodarkening in Yb doped fibers," Proc. SPIE 7195, 71950R (2009).
  30. A. V. Smith and J. J. Smith, "Mode instability in high power fiber amplifiers," Opt. Express 19, 10180-10192 (2011). https://doi.org/10.1364/OE.19.010180
  31. C. R. Menyuk, J. T. Young, J. Hu, A. J. Goers, D. M. Brown, and M. L. Dennis, "Accurate and efficient modeling of the transverse mode instability in high energy laser amplifiers," Opt. Express 29, 17746-17757 (2021). https://doi.org/10.1364/OE.426040
  32. C. Jauregui, C. Stihler, and J. Limpert, "Transverse mode instability," Adv. Opt. Photonics 12, 429-484 (2020). https://doi.org/10.1364/aop.385184
  33. K. Tankala, D. P. Guertin, J. Abramczyk, and N. Jacobson "Reliability of low-index polymer coated double-clad fibers used in fiber lasers and amplifiers," Opt. Eng. 50, 111607 (2011). https://doi.org/10.1117/1.3615653
  34. L. Dong, "Thermal lensing in optical fibers," Opt. Express 24, 19841-19852 (2016). https://doi.org/10.1364/OE.24.019841
  35. X. Peng, J. McLaughlin, and L. Dong, "Temperature dependence of ytterbium doped fiber amplifiers," in Optical Amplifiers and Their Applications (Optica Publishing Group, 2005), paper TuD4.
  36. T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, "Temperature effects on the emission properties of Yb-doped optical fibers," Opt. Commun. 273, 256-259 (2007). https://doi.org/10.1016/j.optcom.2007.01.027
  37. Y. Cheng, Q. Yang, C. Yu, M. Guo, Y. Jiao, Y. Dai, S. Wang, and L. Hu, "Temperature dependence of the spectral properties of Yb3+/P5+/Al3+ co-doped silica fiber core glasses," Opt. Mater. Express 11, 2459-2467 (2021). https://doi.org/10.1364/OME.426280
  38. J. M. F. van Dijk and M. F. H. Schuurmans, "On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4 f-4 f transitions in rare-earth ions," J. Chem. Phys. 78, 5317-5323 (1983). https://doi.org/10.1063/1.445485
  39. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Commun. 136, 375-378 (1997). https://doi.org/10.1016/S0030-4018(96)00720-1
  40. K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," J. Appl. Phys. 91, 576-581 (2002). https://doi.org/10.1063/1.1425445
  41. P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, "Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass," J. Non-Cryst. Solids 354, 4760-4764 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.04.020
  42. P. D. Dragic, M. Cavillon, and J. Ballato, "Materials for optical fiber lasers: a review," Appl. Phys. Rev. 5, 041301 (2018). https://doi.org/10.1063/1.5048410
  43. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, "Multiphonon relaxation of rare-earth ions in oxide glasses," Phys. Rev. B 16, 10 (1977). https://doi.org/10.1103/PhysRevB.16.10
  44. R. Reisfeld and C. K. Jorgensen, "Excited state phenomena in vitreous materials," in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidne and J. and L. Eyring, Eds. (Elsevier, Amsterdam, The Netherlands, 1987), Vol. 9, Chapter 58, pp. 1-90.
  45. P. C. Schultz, "Optical absorption of the transition elements in vitreous silica," J. Am. Ceram. Soc. 57, 309-313 (1974). https://doi.org/10.1111/j.1151-2916.1974.tb10908.x
  46. M.-A. Lapointe, S. Chatigny, M. Piche, M. Cain-Skaff, and J.-N. Maran, "Thermal effects in high-power CW fiber lasers," Proc. SPIE 7195, 71951U (2009).
  47. B. Zintzen, T. Langer, J. Geiger, D. Hoffmann, and P. Loosen, "Optimization of the heat transfer in multi-kW-fiber-lasers," Proc. SPIE 6873, 687319 (2008).
  48. Y. Fan, B. He, J. Zhou, J. Zheng, S. Dai, C. Zhao, Y. Wei, and Q. Lou, "Efficient heat transfer in high-power fiber lasers," Chin. Opt. Lett. 10, 111401 (2012). https://doi.org/10.3788/COL201210.111401
  49. M. Ackermann, G. Rehmann, R. Lange, U. Witte, F. Safarzadeh, B. Boden, H. Weber, D. Netz, C. Perne, A. Kosters, and V. Krause, "Extraction of more than 10 kW from a single ytterbium-doped MM-fiber," Proc. SPIE 10897, 1089717 (2019).
  50. J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, "Metal clad active fibres for power scaling and thermal management at kW power levels," Opt. Express 24, 18592-18606 (2016). https://doi.org/10.1364/OE.24.018592
  51. A. A. Jasim, O. Podrazky, P. Peterka, M. Kamradek, I. Kasik, and P. Honzatko, "Impact of shaping optical fiber preforms based on grinding and a CO2 laser on the inner-cladding losses of shaped double-clad fibers," Opt. Express 28, 13601-13615 (2020). https://doi.org/10.1364/oe.386571
  52. S. R. Bowman, "Lasers without internal heat generation," IEEE J. Quantum Electron. 35, 115-122 (1999). https://doi.org/10.1109/3.737628
  53. P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, "A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients," Int. J. Appl. Glas. Sci. 9, 307-318 (2018). https://doi.org/10.1111/ijag.12329
  54. M. Cavillon, C. Kucera, T. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, "A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map," Int. J. Appl. Glas. Sci. 9, 447-470 (2018). https://doi.org/10.1111/ijag.12336
  55. D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, "Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join," J. Non-Cryst. Solids 113, 58-64 (1989). https://doi.org/10.1016/0022-3093(89)90318-9
  56. J. Ballato, T. W. Hawkins, N. Yu, and P. Dragic, "Materials for TMI mitigation," Proc. SPIE 11665, 1166520 (2021).
  57. G. H. Dieke and H. M. Crosswhite, "The spectra of the doubly and triply ionized rare earths," Appl. Opt. 2, 675-686 (1963). https://doi.org/10.1364/AO.2.000675
  58. A. L. Allred, "Electronegativity values from thermochemical data," J. Inorg. Nucl. Chem. 17, 215-221 (1961). https://doi.org/10.1016/0022-1902(61)80142-5
  59. E. A. Quadrelli, "Lanthanide contraction over the 4f series follows a quadratic decay," Inorg. Chem. 41, 167-169 (2002). https://doi.org/10.1021/ic015580v
  60. C. Clavaguera, J.-P. Dognon, and P. Pyykko, "Calculated lanthanide contractions for molecular trihalides and fully hydrated ions: The contributions from relativity and 4f-shell hybridization," Chem. Phys. Lett. 429, 8-12 (2006). https://doi.org/10.1016/j.cplett.2006.07.094
  61. S. Hufner, Optical Spectra of Transparent Rare Earth Compounds (Elsevier, 1978).
  62. B. G. Wybourne, Spectroscopic Properties of Rare Earths (John Wiley & Sons, USA, 1965).
  63. H. Steinkemper, S. Fischer, M. Hermle, and J. C. Goldschmidt, "Stark level analysis of the spectral line shape of electronic transitions in rare earth ions embedded in host crystals," New J. Phys. 15, 053033 (2013). https://doi.org/10.1088/1367-2630/15/5/053033
  64. X. Tang, Q. Han, X. Zhao, H. Song, K. Ren, and T. Liu, "Method for estimating the Stark splitting of rare-earth ions from the measured cross-section spectra," Appl. Opt. 57, 8573-8577 (2018). https://doi.org/10.1364/AO.57.008573
  65. M. Khodasevich, Y. Varaksa, G. Sinitsyn, V. Aseev, M. Demesh, and A. Yasukevich, "Determining the Stark structure of Yb3+ energy levels in Y3Al5O12 and CaF2 using principal component analysis of temperature dependences of fluorescence spectra," J. Lumin. 187, 295-297 (2017). https://doi.org/10.1016/j.jlumin.2017.03.014
  66. Y. Sun, X. Wang, M. Liao, L. Hu, M. Guzik, G. Boulon, X. Li, P.-W. Kuan, W. Gao, and T. Wang, "Compositional dependence of Stark splitting and spectroscopic properties in Yb3+-doped lead silicate glasses," J. Non. Cryst. Solids 532, 119890 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.119890
  67. T. Okazaki, E. H. Sekiya, and K. Saito, "P concentration dependence of local structure around Yb3+ ions and optical properties in Yb-P-doped silica glasses," Jpn. J. Appl. Phys. 58, 062001 (2019). https://doi.org/10.7567/1347-4065/ab17e4
  68. M. A. Mel'kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, "Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3," Quantum Electron. 34, 843-848 (2004). https://doi.org/10.1070/QE2004v034n09ABEH002688
  69. L. Zhang, T. Xue, D. He, M. Guzik, and G. Boulon, "Influence of Stark splitting levels on the lasing performance of Yb3+ in phosphate and fluorophosphate glasses," Opt. Express 23, 1505-1511 (2015). https://doi.org/10.1364/OE.23.001505
  70. S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, "Highly ytterbium-doped silica fibers with low photo-darkening," Opt. Express 17, 9924-9932 (2009). https://doi.org/10.1364/OE.17.009924
  71. T. W. Hawkins, P. D. Dragic, N. Yu, A. Flores, M. Engholm, and J. Ballato, "Kilowatt power scaling of an intrinsically low Brillouin and thermo-optic Yb-doped silica fiber," J. Opt. Soc. Am. B 38, F38-F49 (2021). https://doi.org/10.1364/JOSAB.434413
  72. M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. Dragic, and J. Ballato, "Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities," Opt. Mater. Express 8, 744-760 (2018). https://doi.org/10.1364/OME.8.000744
  73. Y. Nageno, H. Takebe, and K. Morinaga, "Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses," J. Am. Ceram. Soc. 76, 3081-3086 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb06612.x
  74. M. P. Hehlen, M. Sheik-Bahae, and R. I. Epstein, "Solid-state optical refrigeration," in Handbook on the Physics and Chemistry of Rare Earths, J.-C. G. Bunzli and V. K. Pecharsky, Eds., 1st ed. (Elsevier, 2014), Vol. 45, Chapter 265, pp. 179-260.
  75. A. Mafi, "Temperature distribution inside a double-cladding optical fiber laser or amplifier," J. Opt. Soc. Am. B 37, 1821-1828 (2020). https://doi.org/10.1364/josab.390935
  76. Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, "Thermal effects in kilowatt all-fiber MOPA," Opt. Express 19, 15162-15172 (2011). https://doi.org/10.1364/OE.19.015162
  77. M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, "Thermal effects in doped fibers," J. Light. Technol. 16, 1013-1023 (1998). https://doi.org/10.1109/50.681458
  78. S. S. Sane, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, "11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of Rubidium," Opt. Express 20, 8915-8919 (2012). https://doi.org/10.1364/OE.20.008915
  79. F. Gibert, J. Pellegrino, D. Edouart, C. Cenac, L. Lombard, J. Le Gouet, T. Nuns, A. Cosentino, P. Spano, and G. Di Nepi, "2-㎛ double-pulse single-frequency Tm:fiber laser pumped Ho:YLF laser for a space-borne CO2 lidar," Appl. Opt. 57, 10370-10379 (2018). https://doi.org/10.1364/ao.57.010370
  80. M. Steinke, H. Tunnermann, V. Kuhn, T. Theeg, M. Karow, O. De Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, "Single-frequency fiber amplifiers for next-generation gravitational wave detectors," IEEE J. Sel. Top. Quantum Electron. 24, 3100613 (2018).
  81. S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, "Review of recent progress on single-frequency fiber lasers," J. Opt. Soc. Am. B 34, A49-A62 (2017). https://doi.org/10.1364/JOSAB.34.000A49
  82. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, "400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser," Opt. Lett. 36, 3708-3710 (2011). https://doi.org/10.1364/OL.36.003708
  83. C. Li, S. Xu, C. Yang, X. Wei, and Z. Yang, "Frequency noise of high-gain phosphate fiber single-frequency laser," Laser Phys. 23, 045107 (2013). https://doi.org/10.1088/1054-660X/23/4/045107
  84. S. Liu, F. Song, H. Cai, T. Li, B. Tian, Z. Wu, and J. Tian, "Effect of thermal lens on beam quality and mode matching in LD pumped Er-Yb-codoped phosphate glass microchip laser," J. Phys. D: Appl. Phys. 41, 035104 (2008). https://doi.org/10.1088/0022-3727/41/3/035104
  85. Q. Shi, H. Cheng, J.-W. Lu, and Y. Sun, "Spectroscopic properties of Nd3+-doped phosphate laser glasses," Chinese J. Lumin. 26, 359-364 (2005). https://doi.org/10.3321/j.issn:1000-7032.2005.03.015
  86. G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, "Analytical model for rare-earth-doped fiber amplifiers and lasers," IEEE J. Quantum Electron. 30, 1817-1830 (1994). https://doi.org/10.1109/3.301646
  87. A. A. Stolov, D. A. Simoff, and J. Li, "Thermal stability of specialty optical fibers," J. Light. Technol. 26, 3443-3451 (2008). https://doi.org/10.1109/JLT.2008.925698
  88. L. Huang, R. S. Dyer, R. J. Lago, A. A. Stolov, and J. Li, "Mechanical properties of polyimide coated optical fibers at elevated temperatures," Proc. SPIE 9702, 97020Y (2016).
  89. J. Knall, P.-B. Vigneron, M. Engholm, P. D. Dragic, N. Yu, J. Ballato, M. Bernier, and M. J. F. Digonnet, "Laser cooling in a silica optical fiber at atmospheric pressure," Opt. Lett. 45, 1092-1095 (2020). https://doi.org/10.1364/ol.384658
  90. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, "Laser cooling of solids to cryogenic temperatures," Nat. Photonics 4, 161-164 (2010). https://doi.org/10.1038/nphoton.2009.269
  91. M. Peysokhan, S. Rostami, E. Mobini, A. R. Albrecht, S. Kuhn, S. Hein, C. Hupel, J. Nold, N. Haarlammert, T. Schreiber, R. Eberhardt, A. S. Flores, A. Tunnermann, M. SheikBahae, and A. Mafi, "Laser cooling of ytterbium-doped silica glass by more than 6 Kelvin," in Conference on Lasers and Electro-Optics (Optica Publishing Group, 2021), paper FTu2L.6.
  92. L. Huang, H. Zhang, X. Wang, and P. Zhou, "Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 ℃," IEEE Photonics J. 8, 1501407 (2016).
  93. T. R. Gosnell, "Laser cooling of a solid by 65 K starting from room temperature," Opt. Lett. 24, 1041-1043 (1999). https://doi.org/10.1364/OL.24.001041
  94. G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, "Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses," Phys. Rev. B 57, 7673-7678 (1998). https://doi.org/10.1103/physrevb.57.7673
  95. M. P. Hehlen, R. I. Epstein, and H. Inoue, "Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN," Phys. Rev. B 75, 144302 (2007). https://doi.org/10.1103/physrevb.75.144302
  96. P. Dragic and J. Ballato, "A brief review of specialty optical fibers for Brillouin-scattering-based distributed sensors," Appl. Sci. 8, 1996 (2018). https://doi.org/10.3390/app8101996
  97. E. Li, "Rayleigh scattering based distributed optical fiber sensing," Proc. SPIE 10464, 104641K (2017).
  98. L. Thevenaz, Advanced Fiber Optics: Concept and Technology (EPFL press, 2011).
  99. X. Bao and L. Chen, "Recent progress in distributed fiber optic sensors," Sensors 12, 8601-8639 (2012). https://doi.org/10.3390/s120708601
  100. Y. Jeong, C. Jauregui, D. J. Richardson, and J. Nilsson, "In situ spatially-resolved thermal and Brillouin diagnosis of high-power ytterbium-doped fibre laser by Brillouin optical time domain analysis," Electron. Lett. 45, 153-154 (2009). https://doi.org/10.1049/el:20093465
  101. N. Yu and P. D. Dragic, "On the use of Brillouin scattering to evaluate quantum conversion efficiency in Yb-doped optical fibers," J. Light. Technol. 39, 4158-4165 (2021). https://doi.org/10.1109/JLT.2020.3024821
  102. N. Yu and P. D. Dragic, "Probing the quantum conversion efficiency in Yb-doped optical fibers with Brillouin scattering," Proc. SPIE 11702, 117020B (2021).
  103. Z. Lou, B. Yang, K. Han, X. Wang, H. Zhang, X. Xi, and Z. Liu, "Real-time in-situ distributed fiber core temperature measurement in hundred-watt fiber laser oscillator pumped by 915/976 nm LD sources," Sci. Rep. 10, 9006 (2020). https://doi.org/10.1038/s41598-020-66470-3
  104. Z. Lou, K. Han, B. Yang, H. Zhang, X. Xi, X. Wang, X. Xu, and Z. Liu, "Realization of in situ fiber-core temperature measurement in a kilowatt-level fiber laser oscillator: Design and optimization of the method based on OFDR," J. Light. Technol. 39, 2573-2582 (2021). https://doi.org/10.1109/JLT.2020.3048747
  105. M. Peysokhan, E. Mobini, A. Allahverdi, B. Abaie, and A. Mafi, "Characterization of Yb-doped ZBLAN fiber as a platform for radiation-balanced lasers," Photonics Res. 8, 202-210 (2020). https://doi.org/10.1364/prj.380615
  106. K. Tang, K. Dong, C. J. Nicolai, Y. Li, J. Li, S. Lou, C.-W. Qiu, D. H. Raulet, J. Yao, and J. Wu, "Millikelvin-resolved ambient thermography," Sci. Adv. 6, eabd8688 (2020). https://doi.org/10.1126/sciadv.abd8688
  107. W.-J. Hwang, K.-S. Shin, J.-H. Roh, D.-S. Lee, and S.-H. Choa, "Development of micro-heaters with optimized temperature compensation design for gas sensors," Sensors 11, 2580-2591 (2011). https://doi.org/10.3390/s110302580
  108. A. Arora, "High-resolution temperature and acoustic pressure sensors utilizing slow-light fiber Bragg gratings," Ph.D. Thesis, Stanford University, USA (2019).
  109. R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic Press, 2009).
  110. Z. Zhou, Z. Li, N. Tang, J. Sun, K. Han, and Z. Wang, "Online temperature measurement of fiber Bragg gratings inside a fiber laser," Opt. Fiber Technol. 45, 137-140 (2018). https://doi.org/10.1016/j.yofte.2018.07.009
  111. A. M. Rocha, P. F. da C. Antunes, M. de F. F. Domingues, M. Facao, and P. S. de B. Andre, "Detection of fiber fuse effect using FBG sensors," IEEE Sens. J. 11, 1390-1394 (2011). https://doi.org/10.1109/JSEN.2010.2094183
  112. V. Goloborodko, S. Keren, A. Rosenthal, B. Levit, and M. Horowitz, "Measuring temperature profiles in high-power optical fiber components," Appl. Opt. 42, 2284-2288 (2003). https://doi.org/10.1364/AO.42.002284
  113. G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, "Slow light in fiber Bragg gratings and its applications," J. Phys. D: Appl. Phys. 49, 463001 (2016). https://doi.org/10.1088/0022-3727/49/46/463001
  114. A. Arora, M. Esmaeelpour, M. Bernier, and M. J. F. Digonnet, "High-resolution slow-light fiber Bragg grating temperature sensor with phase-sensitive detection," Opt. Lett. 43, 3337-3340 (2018). https://doi.org/10.1364/OL.43.003337
  115. L. J. Mawst, H. Kim, G. Smith, W. Sun, and N. Tansu, "Strained-layer quantum well materials grown by MOCVD for diode laser application," Prog. Quantum Electron. 75, 100303 (2021). https://doi.org/10.1016/j.pquantelec.2020.100303
  116. P. Zhou, H. Xiao, J. Leng, H. Zhang, J. Xu, and J. Wu, "Recent development on high-power tandem-pumped fiber laser," Proc. SPIE 10016, 100160M (2016).
  117. P. Zhou, H. Xiao, J. Leng, J. Xu, Z. Chen, H. Zhang, and Z. Liu, "High-power fiber lasers based on tandem pumping," J. Opt. Soc. Am. B 34, A29-A36 (2017). https://doi.org/10.1364/JOSAB.34.000A29
  118. M. Kanskar, C. Bai, L. Bao, Z. Chen, C. Chiong, M. De-Franza, K. Fortier, M. Hemenway, S. Li, E. Martin, J. Small, B. Tomakian, W. Urbanek, B. Wilkins, and J. Zhang, "High brightness diodes and 600 W 62% efficient low SWaP fibercoupled package," Proc. SPIE 11262, 112620A (2020).
  119. T. Konning, S. Ahlert, J.-N. Weimar, R. Steinborn-Knuth, F. Ahnepohl, H. Kissel, B. Kohler, G. Liu, and S. Lehkonen, "Wavelength stabilized fiber coupled modules at 79x nm, 88x nm, and 97x nm with up to 600W output power based on single emitters," Proc. SPIE 11668, 116680F (2021).
  120. N. Platonov, O. Shkurikhin, V. Fomin, D. Myasnikov, R. Yagodkin, A. Ferin, A. Doronkin, I. Ulyanov, and V. Gapontsev, "High-efficient kW-level single-mode ytterbium fiber lasers in all-fiber format with diffraction-limited beam at wavelengths in 1000-1030 nm spectral range," Proc. SPIE 11260, 1126003 (2020).
  121. V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, "Diffraction limited ultra-high-power fiber lasers," in Lasers, Sources and Related Photonic Devices (Optica Publishing Group, 2010), paper AWA1.
  122. X. Dong, X. Li, H. Xiao, X. Wang, and P. Zhou, "Efficient special S-band ytterbium fiber laser emitting at 1012 nm and its application in tandem pumping," Laser Phys. 22, 953-956 (2012). https://doi.org/10.1134/S1054660X12050052
  123. H. Xiao, J. Leng, H. Zhang, L. Huang, J. Xu, and P. Zhou, "High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump," Appl. Opt. 54, 8166-8169 (2015). https://doi.org/10.1364/AO.54.008166
  124. H. Yang, W. Zhao, J. Si, B. Zhao, and Y. Zhu, "126 W fiber laser at 1018 nm and its application in tandem pumped fiber amplifier," J. Opt. 18, 125801 (2016). https://doi.org/10.1088/2040-8986/18/12/125801
  125. R. Li, H. Xiao, J. Lenn, Z. Chen, J. Xu, J. Wu, and P. Zhou, "2240 W high-brightness 1018 nm fiber laser for tandem pump application," Laser Phys. Lett. 14, 125102 (2017). https://doi.org/10.1088/1612-202X/aa7d84
  126. Z. Xie, W. Shi, Q. Sheng, S. Fu, Q. Fang, H. Zhang, X. Bai, G. Shi, and J. Yao, "Investigation of ASE and SRS effects on 1018nm short-wavelength Yb3+-doped fiber laser," Proc. SPIE 10083, 1008327 (2017).
  127. P. Yan, X. Wang, Z. Wang, Y. Huang, D. Li, Q. Xiao, and M. Gong, "A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes," IEEE J. Sel. Top. Quantum Electron. 24, 0902506 (2018).
  128. H. Wu, H. Xiao, H. Zhang, W. Liu, and P. Zhou, "Preliminary theoretical analysis of high-power Yb-doped fiber amplifiers tandem-pumped by short-wavelength fiber lasers," Proc. SPIE 11781, 1178120 (2021).
  129. S. K. Kalyoncu and A. Yeniay, "High brightness 1018 nm monolithic fiber laser with power scaling to >500 W," Appl. Opt. 59, 4763-4767 (2020). https://doi.org/10.1364/ao.393043
  130. J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, "Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers," Opt. Express 19, 18645-18654 (2011). https://doi.org/10.1364/OE.19.018645
  131. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, "Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power," Opt. Express 16, 13240-13266 (2008). https://doi.org/10.1364/OE.16.013240
  132. T. Zhang, Y. Ding, Z. Liu, and W. Gong, "An optimization of Raman effects in tandem-pumped Yb-doped kilowatt fiber amplifiers," Proc. SPIE 9524, 95240Y (2015).
  133. Z. Wang, W. Yu, J. Tian, T. Qi, D. Li, Q. Xiao, P. Yan, and M. Gong, "5.1 kW tandem-pumped fiber amplifier seeded by random fiber laser with high suppression of stimulated Raman scattering," IEEE J. Quantum Electron. 57, 6800109 (2021).
  134. K.-J. Lim, S. K.-W. Seah, J. Y. Ye, W. W. Lim, C.-P. Seah, Y.- B. Tan, S. Tan, H. Lim, R. Sidharthan, A. R. Prasadh, C.-J. Chang, S. Yoo, and S.-L. Chua, "High absorption large-mode area step-index fiber for tandem-pumped high-brightness high-power lasers," Photonics Res. 8, 1599-1604 (2020). https://doi.org/10.1364/prj.400755
  135. Z. Wang, P. Yan, Q. Xiao, D. Li, and M. Gong, "Experimental research on high power tandem pumped fiber laser with homemade gain fiber," Proc. SPIE 11455, 114556V (2020).
  136. J. Y. Dai, F. Y. Li, N. Liu, C. Shen, L. Zhang, H. Li, Y. Li, S. Sun, Y. Li, J. Lv, L. Jiang, H. He, H. H. Lin, J. Wang, F. Jing, and C. Gao, "10kW-level Yb-doped aluminophosphosilicate fiber," in 14th Pacific Rim Conference on Lasers and Electro-Optics (CLEO PR 2020) (Optica Publishing Group, 2020), paper C9A_1.
  137. X. Tian, X. Zhao, M. Wang, Q. Hu, H. Li, B. Rao, H. Xiao, and Z. Wang, "Influence of Bragg reflection of chirped tilted fiber Bragg grating on Raman suppression in high-power tandem pumping fiber amplifiers," Opt. Express 28, 19508-19517 (2020). https://doi.org/10.1364/oe.396250
  138. M. Wang, Z. Wang, L. Liu, Q. Hu, H. Xiao, and X. Xu, "Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings," Photonics Res. 7, 167-171 (2019). https://doi.org/10.1364/PRJ.7.000167
  139. H. Song, D. Yan, W. Wu, B. Shen, X. Feng, Y. Liu, L. Li, Q. Chu, M. Li, J. Wang, and R. Tao, "SRS suppression in multi-kW fiber lasers with a multiplexed CTFBG," Opt. Express 29, 20535-20544 (2021). https://doi.org/10.1364/OE.426979
  140. S. Naderi, I. Dajani, J. Grosek, T. Madden, and T.-N. Dinh, "Theoretical analysis of effect of pump and signal wavelengths on modal instabilities in Yb-doped fiber amplifiers," Proc. SPIE 8964, 89641W (2014).
  141. J. S. Park, T. H. Kim, Y. J. Oh, E. J. Park, J. W. Kim, and H. Jeong, "Investigation of photodarkening in tandem-pumped Yb-doped fibers," Opt. Express 28, 27316-27323 (2020). https://doi.org/10.1364/oe.400094
  142. C. Shi, X. Wang, H. Zhang, R. Su, P. Ma, P. Zhou, X. Xu, and Q. Lu, "Simulation investigation of impact factors in photodarkening-induced beam degradation in fiber amplifiers," Laser Phys. 27, 105102 (2017). https://doi.org/10.1088/1555-6611/aa77be
  143. J. Dai, C. Shen, N. Liu, L. Zhang, H. Li, H. He, F. Li, Y. Li, J. Lv, L. Jiang, Y. Li, H. Lin, J. Wang, F. Jing, and C. Gao, "10 kW-level output power from a tandem-pumped Yb-doped aluminophosphosilicate fiber amplifier," Opt. Fiber Technol. 67, 102738 (2021). https://doi.org/10.1016/j.yofte.2021.102738
  144. J. Dai, F. Li, N. Liu, C. Shen, L. Zhang, H. Li, Y. Li, S. Sun, Y. Li, J. Lv, L. Jiang, H. He, H. Lin, J. Wang, F. Jing, and C. Gao, "Extraction of more than 10 kW from Yb-doped tandem-pumping aluminophosphosilicate fiber," Proc. SPIE 11780, 117801D (2021).
  145. A. Malinowski, J. H. V. Price, and M. N. Zervas, "Sub-microsecond pulsed pumping as a means of suppressing amplified spontaneous emission in tandem pumped fiber amplifiers," IEEE J. Quantum Electron. 51, 6800307 (2015).
  146. A. Malinowski, J. H. V. Price, and M. N. Zervas, "Overlapped pulsed pumping of tandem pumped fiber amplifiers to increase achievable pulse energy," IEEE J. Quantum Electron. 53, 1600108 (2017).
  147. F. Beier, M. Strecker, J. Nold, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tunnermann, "6.8 kW peak power quasi-continuous wave tandem-pumped Ytterbium amplifier at 1071 nm," Proc. SPIE 9344, 93441H (2015).
  148. A. S. Kurkov, "Oscillation spectral range of Yb-doped fiber lasers," Laser Phys. Lett. 4, 93-102 (2007). https://doi.org/10.1002/lapl.200610094
  149. F. Roeser, C. Jauregui, J. Limpert, and A. Tunnermann, "94 W 980 nm high brightness Yb-doped fiber laser," Opt. Express 16, 17310-17318 (2008). https://doi.org/10.1364/OE.16.017310
  150. S. S. Aleshkina, A. E. Levchenko, O. I. Medvedkov, K. K. Bobkov, M. M. Bubnov, D. S. Lipatov, A. N. Guryanov, and M. E. Likhachev, "Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser," IEEE Photonics Technol. Lett. 30, 127-130 (2018). https://doi.org/10.1109/lpt.2017.2778305
  151. M. Chen, A. Liu, J. Cao, Z. Huang, and J. Chen, "Demonstration of 50-W-level all-fiber oscillator operating near 980 nm with the 20-㎛ core-diameter double-cladding Yb-doped fiber," Opt. Fiber Technol. 65, 102609 (2021). https://doi.org/10.1016/j.yofte.2021.102609
  152. H. Li, L. Zhang, R. Sidharthan, D. Ho, X. Wu, N. Venkatram, H. Sun, T. Huang, and S. Yoo, "Pump wavelength dependence of photodarkening in Yb-doped fibers," J. Light. Technol. 35, 2535-2540 (2017). https://doi.org/10.1109/JLT.2017.2690383
  153. B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Opt. Lett. 29, 1891-1893 (2004). https://doi.org/10.1364/OL.29.001891
  154. S. Matsubara, K. Uno, Y. Nakajima, S. Kawato, T. Kobayashi, and A. Shirakawa, "Extremely low quantum defect oscillation of Ytterbium fiber laser by laser diode pumping at room temperature," in Advanced Solid-State Photonics (Optica Publishing Group, 2007), paper TuB4.
  155. N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. Dragic, "Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber," Opt. Lett. 43, 3096-3099 (2018). https://doi.org/10.1364/OL.43.003096
  156. G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, "Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm," Opt. Express 23, 17693-17700 (2015). https://doi.org/10.1364/OE.23.017693
  157. B. Gouhier, S. Rota-Rodrigo, G. Guiraud, N. Traynor, and G. Santarelli, "Low-noise single-frequency 50 W fiber laser operating at 1013 nm," Laser Phys. Lett. 16, 045103 (2019). https://doi.org/10.1088/1612-202x/aafd20
  158. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, "Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3," Opt. Mater. 24, 103-109 (2003). https://doi.org/10.1016/S0925-3467(03)00112-5
  159. S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. SheikBahae, "Solid-state optical refrigeration to sub-100 Kelvin regime," Sci. Rep. 6, 20380 (2016). https://doi.org/10.1038/srep20380
  160. S. R. Nagel, J. B. MacChesney, and K. L. Walker, "An overview of the modified chemical vapor deposition (MCVD) process and performance," IEEE Trans. Microw. Theory Tech. 30, 305-322 (1982). https://doi.org/10.1109/TMTT.1982.1131071
  161. J. Knall, A. Arora, M. Bernier, S. Cozic, and M. J. F. Digonnet, "Demonstration of anti-Stokes cooling in Yb-doped ZBLAN fibers at atmospheric pressure," Opt. Lett. 44, 2338-2341 (2019). https://doi.org/10.1364/ol.44.002338
  162. J. Ballato and P. Dragic, "On the clustering of rare earth dopants in fiber lasers," J. Dir. Energy 6, 175-181 (2017).
  163. P. Pringsheim, "Zwei Bemerkungen uber den Unterschied von Lumineszenz- und Temperaturstrahlung," Zeitschrift fur Phys. 57, 739-746 (1929). https://doi.org/10.1007/BF01340652
  164. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-503 (1995). https://doi.org/10.1038/377500a0
  165. D. V. Seletskiy, R. Epstein, and M. Sheik-Bahae, "Laser cooling in solids: advances and prospects," Rep. Prog. Phys. 79, 096401 (2016). https://doi.org/10.1088/0034-4885/79/9/096401
  166. M. Sheik-Bahae and R. I. Epstein, "Optical refrigeration," Nat. Photonics 1, 693-699 (2007). https://doi.org/10.1038/nphoton.2007.244
  167. M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, "Materials for optical cryocoolers," J. Mater. Chem. C 1, 7471-7478 (2013). https://doi.org/10.1039/c3tc31681e
  168. R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurements of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001). https://doi.org/10.1063/1.1406544
  169. J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, "Cooling to 208 K by optical refrigeration," Appl. Phys. Lett. 86, 154107 (2005). https://doi.org/10.1063/1.1900951
  170. J. Fernandez, A. J. Garcia-Adeva, and R. Balda, "Anti-stokes laser cooling in bulk erbium-doped materials," Phys. Rev. Lett. 97, 033001 (2006). https://doi.org/10.1103/PhysRevLett.97.033001
  171. W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, "Anti-Stokes luminescence cooling of Tm3+doped BaY2F8," Opt. Express 16, 1704-1710 (2008). https://doi.org/10.1364/OE.16.001704
  172. S. R. Bowman, S. O'Connor, S. Biswal, and N. J. Condon, "Demonstration and analysis of a high power radiation balanced laser," in CLEO:2011 - Laser Applications to Photonic Applications (Optica Publishing Group, 2011), paper CMH4.
  173. S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, "Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature," Opt. Lett. 38, 1588-1590 (2013). https://doi.org/10.1364/OL.38.001588
  174. E. S. de L. Filho, G. Nemova, S. Loranger, and R. Kashyap, "Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure," Opt. Express 21, 24711-24720 (2013). https://doi.org/10.1364/OE.21.024711
  175. G. Nemova and R. Kashyap, "Optimization of the dimensions of an Yb3+:ZBLANP optical fiber sample for laser cooling of solids," Opt. Lett. 33, 2218-2220 (2008). https://doi.org/10.1364/OL.33.002218
  176. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of anti-Stokes fluorescence cooling in thulium-doped glass," Phys. Rev. Lett. 85, 3600-3603 (2000). https://doi.org/10.1103/PhysRevLett.85.3600
  177. G. Nemova, "Progress Toward Laser Cooling of Thulium-Doped Fibers," in Laser Cooling: Fundamental Properties and Applications, 1st ed. (Pan Stanford Pub. Pte. Ltd., Singapore, 2017), Chapter. 3.
  178. J. V. Guiheen, C. D. Haines, G. H. Sigel, R. I. Epstein, J. Thiede, and W. M. Patterson, " Yb3+ and Tm3+ -doped fluoroaluminate glasses for anti-Stokes cooling," Phys. Chem. Glas.: Eur. J. Glas. Sci. Technol. Part B 47, 167-176 (2006).
  179. N. J. Condon, S. R. Bowman, S. P. O'Connor, R. S. Quimby, and C. E. Mungan, "Optical cooling in Er3+:KPb2Cl5," Opt. Express 17, 5466-5472 (2009). https://doi.org/10.1364/OE.17.005466
  180. S. Rostami, A. R. Albercht, M. R. Ghasemkhani, S. D. Melgaard, A. Gragossian, M. Tonelli, and M. Sheik-Bahae, "Optical refrigeration of Tm:YLF and Ho:YLF crystals," Proc. SPIE 9765, 97650P (2016).
  181. A. Mendioroz, J. Fernandez, M. Voda, M. Al-Saleh, R. Balda, and A. J. Garcia-Adeva, "Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal," Opt. Lett. 27, 1525-1527 (2002). https://doi.org/10.1364/OL.27.001525
  182. X. Luo, M. D. Eisaman, and T. R. Gosnell, "Laser cooling of a solid by 21 K starting from room temperature," Opt. Lett. 23, 639-641 (1998). https://doi.org/10.1364/OL.23.000639
  183. A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-dunlop, "Laser cooling of a solid from ambient temperature," J. Mod. Opt. 48, 103-114 (2001). https://doi.org/10.1080/09500340108235158
  184. A. Rayner, M. Hirsch, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Distributed laser refrigeration," Appl. Opt. 40, 5423-5429 (2001). https://doi.org/10.1364/AO.40.005423
  185. Z. Yang, J. Meng, A. R. Albrecht, and M. Sheik-Bahae, "Radiation-balanced Yb:YAG disk laser," Opt. Express 27, 1392-1400 (2019). https://doi.org/10.1364/OE.27.001392
  186. S. R. Bowman, S. P. O'Connor, S. Biswal, N. J. Condon, and A. Rosenberg, "Minimizing heat generation in solid-state lasers," IEEE J. Quantum Electron. 46, 1076-1085 (2010). https://doi.org/10.1109/JQE.2010.2043415
  187. J. M. Knall, M. Engholm, T. Boilard, M. Bernier, and M. J. F. Digonnet, "Radiation-balanced silica fiber amplifier," Phys. Rev. Lett. 127, 013903 (2021). https://doi.org/10.1103/PhysRevLett.127.013903
  188. J. Knall, M. Engholm, J. Ballato, P. Dragic, N. Yu, and M. Digonnet, "Experimental comparison of silica fibers for laser cooling," Opt. Lett. 45, 4020-4023 (2020). https://doi.org/10.1364/ol.395513
  189. J. M. Knall, P.-B. Vigneron, M. Engholm, P. D. Dragic, N. Yu, J. Ballato, M. Bernier, and M. J. F. Digonnet, "Experimental observation of cooling in Yb-doped silica fibers," Proc. SPIE 11298, 112980F (2020).
  190. J. M. Knall, M. Esmaeelpour, and M. J. F. Digonnet, "Model of anti-Stokes fluorescence cooling in a single-mode optical fiber," J. Light. Technol. 36, 4752-4760 (2018). https://doi.org/10.1109/jlt.2018.2861367
  191. J. M. Knall and M. J. F. Digonnet, "Design of high-power radiation-balanced silica fiber lasers with a doped core and cladding," J. Light. Technol. 39, 2497-2504 (2021). https://doi.org/10.1109/JLT.2021.3053466
  192. J. Knall, M. Engholm, T. Boilard, M. Bernier, P.-B. Vigneron, N. Yu, P. D. Dragic, J. Ballato, and M. J. F. Digonnet, "Radiation-balanced silica fiber laser," Optica 8, 830-833 (2021). https://doi.org/10.1364/OPTICA.425115
  193. G. Nemova and R. Kashyap, "High-power fiber lasers with integrated rare-earth optical cooler," Proc. SPIE 7614, 761406 (2010).
  194. N. Yu, K. V. Desai, A. E. Mironov, M. Xiong, M. Cavillon, T. Hawkins, J. Ballato, J. G. Eden, and P. D. Dragic, "Reduced quantum defect in a Yb-doped fiber laser by balanced dual-wavelength excitation," Appl. Phys. Lett. 119, 141105 (2021). https://doi.org/10.1063/5.0063276
  195. N. Yu, M. Cavillon, C. Kucera, T. Hawkins, J. Ballato, and P. Dragic, "Low quantum defect fiber lasers via Yb-doped multicomponent fluorosilicate optical fiber," in Conference on Lasers and Electro-Optics (Optica Publishing Group, 2018), paper STu3K.6.