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A CLASS OF STRUCTURED FRAMES IN FINITE
DIMENSIONAL HILBERT SPACES

Jineesh Thomas a, ∗ N. M. Madhavan Namboothiri b

and T. C. Easwaran Nambudiri c

Abstract. We introduce a special class of structured frames having single gener-
ators in finite dimensional Hilbert spaces. We call them as pseudo B-Gabor like
frames and present a characterisation of the frame operators associated with these
frames. The concept of Gabor semi-frames is also introduced and some significant
properties of the associated semi-frame operators are discussed.

1. Introduction

The fast growing theory of Hilbert space frames clenches its own space in both
pure and applied mathematics due to its wide applications. Time- frequency analysis
of signals in L2(R), as suggested by Dennis Gabor in Theory of Communication [7],
requires a special system of the form {EmbTnag : m,n ∈ Z}, where g ∈ L2(R)
and Emb, Tna (m,n ∈ Z, a, b > 0) are the Modulation and Translation operators
respectively. This perspective has become the benchmark for the spectral analysis
associated with various time-frequency methods.

Frames in Hilbert spaces were introduced in 1952 by Duffin and Schaeffer [4]
in their study of non harmonic Fourier series. In 1980’s, Janssen designed it an
independent topic of mathematical investigation by his outstanding work [10]. The
gravity of the theory of frames in modern signal processing and time frequency
analysis is now well accepted [8].

Frames were brought to life by Daubechies, Grossmann and Meyer in 1986 with
the fundamental works [3] and put forth the idea of combining Gabor analysis with
frame theory. Gabor analysis aims at representing functions (signals) f ∈ L2(R) as
superpositions of translated and modulated versions of a fixed function g ∈ L2(R).

Received by the editors August 06, 2022. Revised November 09, 2022. Accepted Nov. 11, 2022.
2010 Mathematics Subject Classification. Primary 42C15, 47B90, 94A12.
Key words and phrases. Gabor frame, Gabor frame operator, mixed frame operator, semi-frame

operator.
∗Corresponding author.

c© 2022 Korean Soc. Math. Educ.

321



322 J. Thomas, N.M.M. Namboothiri & T.C. E. Nambudiri

A foremost object in frame theory, both from the theoretical and applications point
of view, is the frame operator associated with a given frame. On the other hand,
frames corresponding to a given nice operator on the space has substantial practical
importance. In particular, Gabor frame operators, which are very special in their
construction, are acquiring notable research attention and are of interest in this
paper too, in the general perspective of finite dimensional Hilbert spaces.

Section 2 provides some basic definitions and results which are very essential for
this article. pseudo B-Gabor like frames in finite dimensional Hilbert spaces and
their frame operators are discussed in Section 3. Section 4 focuses on Gabor semi-
frame operators associated with Gabor semi-frames. Our basic references for both
abstract frame theory and the theory of Gabor frames are [2] and [8].

2. Preliminaries

A countable sequence {fk}∞k=1 of elements in a Hilbert space H is said to be a
frame in H, if there are constants A,B > 0, such that

A‖f‖2 ≤
∞∑

k=1

|〈f, fk〉|2 ≤ B‖f‖2 ∀ f ∈ H.

These constants A, B are called frame bounds. If A = B, then the frame {fk}∞k=1 is
called a tight frame and is called a parseval frame or normalised tight frame when
A = B = 1. Whenever a sequence {fk}∞k=1 of elements in H satisfies the upper
frame inequality, then it is said to be a Bessel sequence or a semi-frame sequence
and {fk}∞k=1 is a frame sequence if it is a frame for span{fk}∞k=1.

If {fk}∞k=1 is a frame in a Hilbert space H, then the map S defined by Sf =∑∞
k=1〈f, fk〉fk for all f ∈ H is a bounded linear operator on H, called the frame

operator associated with the frame {fk}∞k=1. The frame operator of a tight frame is
a scalar multiple of the identity operator and that of a normalised tight frame is the
identity operator [2].

Remark 2.1. Let {fk}∞k=1 be a frame with frame operator S and frame bounds
A, B in a Hilbert space H. Then,

(i) S is bounded, invertible, self-adjoint and positive.
(ii) {S−1fk}∞k=1 is a frame with frame bounds B−1, A−1 and {S−1/2fk}∞k=1 is a

normalised tight frame.
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(iii) If A and B are the optimal frame bounds for {fk}∞k=1, then the bounds
B−1, A−1 are the optimal frame bounds for {S−1fk}∞k=1. The frame operator
for {S−1fk}∞k=1 is S−1. Further we have B−1I ≤ S−1 ≤ A−1I.

Let {fk}∞k=1 be a frame with frame operator S in H, then the frame {S−1fk}∞k=1

is called the (canonical) dual frame of the frame {fk}∞k=1. As follows, every frame
in H admits the frame decomposition in two ways.

Theorem 2.2. Let {fk}∞k=1 be a frame with frame operator S in a Hilbert space H.
Then for all f ∈ H, f =

∑∞
k=1〈f, S−1fk〉fk and f =

∑∞
k=1〈f, fk〉S−1fk.

Both the series converge unconditionally for all f ∈ H.

Gabor analysis uses two important unitary operators, namely, the translation
and modulation operators.

On the N -dimensional Hilbert space l2(ZN ) of complex functions on ZN (equipped
with the standard inner product), the Translation operator Tk, k ∈ ZN and the
Modulation operator Ml, l ∈ ZN are defined by

(Tkg)(j) = g(j − k) and (Mlg)(j) = e2πilj/Ng(j)

where j = 0, 1, 2, ..., N − 1 and g ∈ l2(ZN ).
Gabor type frame operators on the finite dimensional Hilbert space l2(ZN ) and

their characterisation were discussed in [13]. In this paper, we present a similar
discussion in the context of general finite dimensional Hilbert spaces.

3. Pseudo Gabor like Frames and Operators
in Finite Hilbert Spaces

In our discussions, H and K will denote finite dimensional Hilbert spaces. More
precisely we take dimH = N . Also through out this paper, we denote Λ = Λ1×Λ2,
where Λ1,Λ2 are subgroups of ZN with |Λ| ≥ N (unless otherwise specified). We
begin with a simple observation, analogous to Corollary 5.3.2 in [2], on the interplay
of bounded linear operators between two separable Hilbert spaces.

Lemma 3.1. Let H and K be separable Hilbert spaces. Then every surjective
bounded linear operator A : H → K maps frames in H to frames in K. In par-
ticular, every invertible bounded linear operator between two separable Hilbert spaces
maps frames in one to frames in the other.
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Lemma 3.1 motivates to look at the aspects of the images of Gabor frames under
invertible bounded linear operators B : l2(ZN ) → H. Since

B({MlTkg : (k, l) ∈ Λ}) = {BMlTkg : (k, l) ∈ Λ}
= {BMlB

−1BTkB
−1Bg : (k, l) ∈ Λ}

= {(BMlB
−1)(BTkB

−1)(Bg) : (k, l) ∈ Λ}

they are generated by the action of a family of operators {MB
l TB

k : (k, l) ∈ Λ} on a
single generator Bg, where MB

l = BMlB
−1 and TB

k = BTkB
−1. Thus, such image

frames are structured frames in H. We will formulate the following definitions which
will be useful in our further discussions.

Definition. For an invertible bounded linear operator B : l2(ZN ) → H and k ∈ ZN ,
a B-translation TB

k on H is defined by TB
k = BTkB

−1 and for l ∈ ZN , B-modulation
MB

l on H is defined by MB
l = BMlB

−1 where Tk and Ml are respectively the
translation and modulation operators on l2(ZN ).

The family {MB
l TB

k g : (k, l) ∈ Λ} generated by g ∈ H is called a pseudo B-Gabor
like system in H. Such a system is called a pseudo B-Gabor like frame (pseudo B-
Gabor like Bessel sequence) if it forms a frame (Bessel sequence) in H.

A frame G in H is called a pseudo Gabor like frame, if G is a pseudo B-Gabor
like frame for some invertible operator B : l2(ZN ) → H.

Gabor type unitary systems discussed in [9] were defined by generalising the
remarkable property TaEb = e−2πiabEbTa of the pair (Ta, Eb) of translation and
modulation operators on L2(R). Interestingly, for the generalisation of the system
of operators generated by the combination TaEb, we need not stick on to the unitary
system. Instead, a system of invertible operators can be considered, as Proposition
3.2 below suggests.

Proposition 3.2. Let B : l2(ZN ) → H be invertible. Then the following statements
hold.

(i) MB
l TB

k = e2πilk/NTB
k MB

l for all (k, l) ∈ Λ.
(ii) {MB

l TB
k g : (k, l) ∈ Λ} is a pseudo B-Gabor like frame in H if and only if

the family {TB
k MB

l g : (k, l) ∈ Λ} is also a frame in H.

Proof. For all f ∈ l2(ZN ), the commutator relation [1]
TkMlf(j) = e−2πilk/NMlTkf(j) holds for all j ∈ ZN .
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Hence for any x ∈ H and for a bounded invertible operator B : l2(ZN ) → H,

MB
l TB

k x = BMlTkB
−1x

= Be2πilk/NTkMlB
−1x

= e2πilk/NBTkMlB
−1x

= e2πilk/NTB
k MB

l x.

Thus MB
l TB

k = e2πilk/NTB
k MB

l for all (k, l) ∈ Λ, proving (i).
Since {MB

l TB
k g : (k, l) ∈ Λ} is a frame in H and e2πilk/N is of absolute value 1,

the necessary frame inequality for the collection {TB
k MB

l g : (k, l) ∈ Λ} follows
immediately from that of {MB

l TB
k g : (k, l) ∈ Λ}. The reverse implication follows

likewise. ¤

Forthcoming proposition gives a connection between pseudo B-Gabor like frame
in H and Gabor frame in l2(ZN ).

Proposition 3.3. The family {MB
l TB

k g : (k, l) ∈ Λ} forms a pseudo B-Gabor like
frame in H if and only if {MlTkB

−1g : (k, l) ∈ Λ} forms a Gabor frame in l2(ZN ).

Proof. Since {MB
l TB

k g : (k, l) ∈ Λ} = {BMlB
−1BTkB

−1g : (k, l) ∈ Λ}
= B({MlTkB

−1g : (k, l) ∈ Λ}),
the proof follows for both the cases of implications from Lemma 3.1. ¤

Remark 3.4. The existence of a Gabor frame in l2(ZN ) has been established by
Jim Laurence [11] for prime values of N . Romanos-Digenes Malikiosis established
this for any N ≥ 4 [12]. Consequently, for any positive integer N , there is a Gabor
frame in l2(ZN ) of the form {MlTkg : (k, l) ∈ Λ1 × Λ2} where |Λ1 × Λ2| ≥ N and
Λ1, Λ2 are subgroups of ZN . We combine these facts together as Proposition 3.5,
which will be used in sequel [13].

Proposition 3.5. For any two subgroups Λ1 and Λ2 of ZN with |Λ1×Λ2| ≥ N , there
is a tight Gabor frame in l2(ZN ) with the identity operator as its frame operator.

For each invertible bounded linear map B : l2(ZN ) → H, the bounded linear
operator BB∗ on H is positive and invertible. Hence it becomes a frame operator
of some frame in H [5]. Interestingly, this frame operator corresponds to a pseudo
B-Gabor like frame in H.
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Proposition 3.6. For any subset Λ = Λ1×Λ2 of ZN×ZN where Λ1,Λ2 are subgroups
of ZN , with |Λ| ≥ N , there is always a pseudo B-Gabor like frame in H with BB∗

as its frame operator.

Proof. Let Λ = Λ1 × Λ2 be a subset of ZN × ZN with |Λ| ≥ N , where Λ1 and Λ2

are subgroups of ZN . By Proposition 3.5, there is a tight Gabor frame {MlTkg :
(k, l) ∈ Λ1 × Λ2} in l2(ZN ) with the identity operator as its frame operator. If
B : l2(ZN ) → H is a bounded invertible linear map, then the image B({MlTkg :
(k, l) ∈ Λ1 ×Λ2}) = {MB

l TB
k Bg : (k, l) ∈ Λ1 ×Λ2} is a pseudo B-Gabor like frame

in H with frame operator BIB∗ = BB∗. ¤

Apart from the positivity and invertibility of the Gabor frame operators on
l2(ZN ), their commutativity with some specific modulation and translation oper-
ators were significant in characterising the Gabor frame operators [6, 13]. Here we
look at the similar situation in the context of pseudo B-Gabor like frames.

Theorem 3.7. The following are equivalent for a given invertible bounded linear
operator B : l2(ZN ) → H.

i) B∗B is a Gabor frame operator on l2(ZN ).
ii) Every pseudo B-Gabor like frame operator on H commutes with its involved

B-modulations and B-translations.
iii) There exists a Parseval pseudo B-Gabor like frame GΛ1×Λ2 in H for every

subgroups Λ1, Λ2 of ZN with |Λ1 × Λ2| ≥ N .

Proof. i) ⇒ ii): Assume that S is the frame operator of a pseudo B-Gabor like frame
{MB

l TB
k g : (k, l) ∈ Λ} in H. Then B−1 : H → l2(ZN ) maps this frame to the Gabor

frame {MlTkB
−1g : (k, l) ∈ Λ} whose frame operator is B−1S(B−1)∗. Hence the

operator B−1S(B−1)∗ commutes with Ml and Tk for all (k, l) ∈ Λ. Now, assuming
(i), we obtain

SMB
l = SBMlB

−1 = S(B−1)∗(B∗B)MlB
−1

= S(B−1)∗Ml(B∗B)B−1 = S(B−1)∗MlB
∗

= BB−1S(B−1)∗MlB
∗ = BMl(B−1S(B−1)∗)B∗

= BMlB
−1S = MB

l S for all l ∈ Λ2.

Similarly STB
k = TB

k S. This proves ii).
ii) ⇒ iii): For any two subgroups Λ1, Λ2 of ZN with |Λ1 × Λ2| ≥ N , there is

always a Gabor frame G in l2(ZN ) and hence there is a pseudo B-Gabor like frame
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P = B(G) in H. Since by (ii), the frame operator S of such a pseudo B-Gabor
like frame P commutes with its involved B-modulations and B-translations, so does
the operator S−1/2. Hence the image frame GΛ1×Λ2 = S−1/2(P) will be a Parseval
pseudo B-Gabor like frame in H with frame operator as identity operator.

iii) ⇒ i): Let GΛ1×Λ2 be a Parseval pseudo B-Gabor like frame in H for subgroups
Λ1, Λ2 of ZN with |Λ1 × Λ2| ≥ N . Then B−1(GΛ1×Λ2) will be a Gabor frame in
l2(ZN ) with frame operator B−1I(B−1)∗ = (B∗B)−1. Thus (B∗B)−1 commutes
with Ml and Tk for all (k, l) ∈ Λ = Λ1 × Λ2 and hence its inverse B∗B also has this
property. ¤

Thus, each B as above has a specific control in terms of the bounded linear
operator B∗B on l2(ZN ) for yielding Parseval pseudo B-Gabor like frames in H
as well as pseudo B-Gabor like frames having canonical dual frames with same
structure. Such frames are more similar to Gabor frames in l2(ZN ). In view of
the above discussions we give a new definition which is suitable for identifying the
structures more specifically.

Definition. A pseudo B-Gabor like frame {MB
l TB

k Bg : (k, l) ∈ Λ1 × Λ2} in a
separable Hilbert space H is said to be a pseudo B-Gabor frame if B∗B is a Gabor
frame operator on l2(ZN ). The frame operator of a pseudo B-Gabor frame is called
a pseudo B-Gabor frame operator.

Now we look at the canonical dual frame of pseudo B-Gabor frames in H. An
important consequence of Theorem 3.7 is the following.

Theorem 3.8. Let B : l2(ZN ) → H be an invertible map such that B∗B is a Gabor
frame operator on l2(ZN ). Then for any given Gabor frame {MlTkg : (k, l) ∈
Λ1 × Λ2} in l2(ZN ) with frame operator S, the canonical dual frame of the pseudo
B-Gabor frame {MB

l TB
k Bg : (k, l) ∈ Λ} in H is again a pseudo B-Gabor frame

with generator CS−1g where C = (B∗)−1. Also, this pseudo B-Gabor frame has a
dual pseudo C-Gabor frame with same generator CS−1g.

Proof. Let B : l2(ZN ) → H be an invertible map. Take C = (B∗)−1, then C :
l2(ZN ) → H is also an invertible map and
C∗C = ((B∗)−1)∗(B∗)−1 = B−1(B∗)−1 = (B∗B)−1.
Since B∗B is a Gabor frame operator on l2(ZN ) so is its inverse (B∗B)−1. Thus
C∗C is also a Gabor frame operator on l2(ZN ).
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Now, for a given Gabor frame G = {MlTkg : (k, l) ∈ Λ1 × Λ2} in l2(ZN )
with frame operator S, the frame operator of the pseudo B-Gabor frame B(G) =
{MB

l TB
k Bg : (k, l) ∈ Λ1×Λ2} is BSB∗. Hence the canonical dual frame of B(G) is

(BSB∗)−1(B(G))
= (BSB∗)−1({MB

l TB
k Bg : (k, l) ∈ Λ1 × Λ2}

= {MB
l TB

k (BSB∗)−1Bg : (k, l) ∈ Λ1 × Λ2}, by Theorem 3.7 (ii)
= {MB

l TB
k (B∗)−1S−1g : (k, l) ∈ Λ1 × Λ2}

= {MB
l TB

k CS−1g : (k, l) ∈ Λ1 × Λ2}, since C = (B∗)−1.
Thus, the canonical dual frame of the pseudo B-Gabor frame B(G) in H is again a
pseudo B-Gabor frame with generator CS−1g and same generating set Λ = Λ1×Λ2.

Now, mapping the canonical dual Gabor frame S−1(G) = {MlTkS
−1g : (k, l) ∈

Λ} of G by C, we obtain the pseudo C-Gabor frame {MC
l TC

k CS−1g : (k, l) ∈ Λ}.
Frame operator of this frame is CS−1C∗ = (B∗)−1S−1((B∗)−1)∗ = (B∗)−1S−1(B−1)
= (BSB∗)−1, the canonical dual frame operator of B(G).

Thus both the frames {MB
l TB

k CS−1g : (k, l) ∈ Λ} and {MC
l TC

k CS−1g : (k, l) ∈
Λ} are dual frames of B(G) with common generator CS−1g. ¤

Obviously, when the map B : l2(ZN ) → H is unitary, we have C = (B∗)−1 = B

so that the above frames are precisely the same.
The following example is a specific situation of Theorem 3.8. If B, C : l2(ZN ) →

H are invertible with C = (B∗)−1, then {MB
l TB

k CS−1g : (k, l) ∈ Λ} and {MC
l TC

k C

S−1g : (k, l) ∈ Λ} are respectively, pseudo B-Gabor frame and pseudo C-Gabor
frame on H with same generator CS−1g and same frame operator (BSB∗)−1.

Example 3.9. Consider a prime number N . For α 6= 0 in ZN , the dilation operator
on l2(ZN ) defined by Dα(f(m)) = α−1f(km); where αm ≡ km(mod N), for each
m ∈ ZN , is a unitary operator and D∗

α = D−1
α = Dα−1 = D 1

α
.

Direct calculation proves that the operators, dilation Dα, translation Tk and mod-
ulation Ml in the finite dimensional space l2(ZN ) satisfy the following relations.
TkDα = DαTα−1k and DαMl = MαlDα.
For β, γ ∈ C− {0}, with | β | 6= | γ | define for all m ∈ ZN ,

φβ,γ(m) =
{

β if m is odd
γ if m is even

The multiplication operators Mφβ,γ
on l2(ZN ) is defined by Mφβ,γ

(f) = φβ,γ .f =
φβ,γ(m).f(m); for all m ∈ ZN , is invertible with inverse M−1

φβ,γ
= Mφ 1

β
, 1
γ

. Further

the adjoint M∗
φβ,γ

= Mφβ,γ
so that M∗

φβ,γ
Mφβ,γ

= Mφ|β|2,|γ|2 . Also we can see that
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multiplication operator Mφβ,γ
commutes with translation Tk and modulation Ml for

(k, l) ∈ Λ .
Now for all f ∈ l2(ZN ) define, B : l2(ZN ) → l2(ZN ) by B(f) = (Mφβ,γ

Dα)(f)
observe that, B∗ = (Mφβ,γ

Dα)∗ = D∗
αM∗

φβ,γ
= Dα−1Mφβ,γ

and
B∗B = Dα−1Mφβ,γ

Mφβ,γ
Dα = Dα−1Mφ|β|2,|γ|2Dα.

It can be easily verified that B∗B commutes with modulation Ml and translation
Tk. Further, B∗B is positive and invertible. Hence B∗B is a Gabor frame operator
on l2(ZN ). Again we see that,

BMlB
−1f(m) = BMlDα−1Mφ 1

β
, 1
γ

f(m)

= Mφβ,γ
DαMlDα−1Mφ 1

β
, 1
γ

f(m)

= Mφβ,γ
MαlMφ 1

β
, 1
γ

f(m)

= Mαlf(m),

BTkB
−1f(m) = BTkDα−1Mφ 1

β
, 1
γ

f(m)

= Mφβ,γ
DαTkDα−1Mφ 1

β
, 1
γ

f(m)

= Mφβ,γ
TαkMφ 1

β
, 1
γ

f(m)

= Mφβ,γ
φ 1

β
, 1
γ
(m− αk)f(m− αk)

= φβ,γ(m)φ 1
β

, 1
γ
(m− αk)f(m− αk)

Taking C = (B∗)−1 and by simple computations, we obtain
C = (B∗)−1 = Mφ 1

β
, 1
γ

Dα and C−1 = Dα−1Mφβ,γ
.

Now,

CMlC
−1f(m) = CMlDα−1Mφβ,γ

f(m)

= Mφ 1
β

, 1
γ

DαMlDα−1Mφβ,γ
f(m)

= Mφ 1
β

, 1
γ

MαlMφβ,γ
f(m)

= Mαlf(m),

CTkC
−1f(m) = CTkDα−1Mφβ,γ

f(m)

= Mφ 1
β

, 1
γ

DαTkDα−1Mφβ,γ
f(m)

= Mφ 1
β

, 1
γ

TαkMφβ,γ
f(m)

= φ 1
β

, 1
γ
(m)φβ,γ(m− αk)f(m− αk).
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Thus BMlB
−1 = CMlC

−1, but BTkB
−1 6= CTkC

−1. Therefor, MB
l TB

k 6= MC
l TC

k .
Hence for a given Gabor frame G = {MlTkg : (k, l) ∈ Λ} in l2(ZN ) with frame opera-
tor S, C{MlTkS

−1g : (k, l) ∈ Λ} = {MC
l TC

k CS−1g : (k, l) ∈ Λ} and {MB
l TB

k CS−1g :
(k, l) ∈ Λ} are different frames with same generator CS−1g and same frame operator
(BSB∗)−1.

For Bessel sequences in {uk}k∈Z and {vk}k∈Z in H and K respectively, we can
have a bounded linear operator M : H → K given by M(x) = Σ

k∈Z
〈x, vk〉uk, where

the series defining M converges for all x ∈ H. The operator M is called the mixed
frame operator associated with the Bessel sequences {uk} and {vk} [2].

Here is an interesting observation on the relation between mixed frame operators
and invertible operators from l2(ZN ) onto H.

Proposition 3.10. Every invertible operator B : l2(ZN ) → H can be identified as
a mixed frame operator.

Proof. Let B : l2(ZN ) → H be a bounded invertible map. Obviously, B maps any
given Gabor frame G = {MlTkg : (k, l) ∈ Λ} in l2(ZN ) to a pseudo B-Gabor like
frame B(G) = {MB

l TB
k Bg : (k, l) ∈ Λ} in H. Let M be the mixed frame operator

defined by Mf = Σ
(k,l)∈Λ

〈f, MlTkg〉MB
l TB

k Bg, f ∈ l2(ZN ).

Then for all f ∈ l2(ZN ),

Mf = Σ
(k,l)∈Λ

〈f, MlTkg〉BMlB
−1BTkB

−1Bg

= B Σ
(k,l)∈Λ

〈f, MlTkg〉MlTkg

= BS(f),

where S is the frame operator of G.
Thus, M = BS. Now, by choosing G as a Parseval Gabor frame in l2(ZN ), we obtain
S = Il2(ZN ) so that B : l2(ZN ) → H is precisely a mixed frame operator. ¤

4. Gabor Semi-frame Operators in Finite Dimensional
Hilbert Spaces

Let H be an N -dimensional Hilbert space. Any finite sequence of elements of
H can be considered as a Bessel sequence in H. Let {uk}k∈∆, |∆| < ∞ is such
a sequence. Then there is a bounded linear positive operator S on H defined by



STRUCTURED FRAMES IN FINITE DIMENSIONAL HILBERT SPACES 331

S(x) =
∑

k∈∆

〈x, uk〉uk for all x ∈ H. We call this operator as the semi-frame operator

associated to {uk}k∈∆.
Analogously, the family G(g,∆) = {MB

l TB
k g : (k, l) ∈ ∆} where g ∈ H and

∆ ⊆ ZN × ZN , is a Bessel sequence in H. Hence there is an associated semi-
frame operator SG,∆ corresponding to G(g,∆), called the Gabor semi-frame operator
associated with the generating set ∆ and generating function g.

Proposition 4.1. Let Λ = Λ1 × Λ2 ⊆ ZN × ZN be such that Λ′1 = Λ1 − r and
Λ′2 = Λ2−t are subgroups of ZN for some (r, t) ∈ ZN×ZN with | Λ |≥ N . If S is the
Gabor semi-frame operator on H associated with G(g,Λ) then there are Gabor semi-
frame operators Sr and St on H such that ST

(B∗)−1

r = TB
r Sr and SM

(B∗)−1

t = MB
t St.

Moreover SrT
(B∗)−1

h = TB
h Sr for all h ∈ Λ′1 and StM

(B∗)−1

p = MB
p St for all p ∈ Λ′2.

Proof. Let S be the Gabor semi-frame operator of G(g,Λ) as given in the statement.
Then for x ∈ H, S(x) =

∑
(k,l)∈Λ1×Λ2

〈x,MB
l TB

k g〉MB
l TB

k g

ST (B∗)−1

r (x) =
∑

(k,l)∈Λ1×Λ2

〈T (B∗)−1

r (x), MB
l TB

k g〉MB
l TB

k g

=
∑

(k,l)∈Λ1×Λ2

〈x, (T (B∗)−1

r )∗MB
l TB

k g〉MB
l TB

k g

=
∑

(k,l)∈Λ1×Λ2

〈x,BT−rB
−1BMlB

−1BTkB
−1g〉MB

l TB
k g

=
∑

(k,l)∈Λ1×Λ2

〈x,BT−rMlTkB
−1g〉MB

l TB
k g

=
∑

(k,l)∈Λ1×Λ2

〈x,Be2πilr/NMlTk−rB
−1g〉MB

l TB
k g.

Putting k − r = k′ we have k = r + k′, hence the above expression becomes;

ST (B∗)−1

r (x) =
∑

(k′,l)∈Λ′1×Λ2

〈x,Be2πilr/NMlTk′B
−1g〉MB

l TB
r+k′g

= TB
r

∑

(k′,l)∈Λ′1×Λ2

〈x,MB
l TB

k′ g〉MB
l TB

k′ g

= TB
r Sr(x),

where Sr(x) =
∑

(k′,l)∈Λ′1×Λ2

〈x,MB
l TB

k′ g〉MB
l TB

k′ g. Also we have,
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SM
(B∗)−1

t (x) =
∑

(k,l)∈Λ1×Λ2

〈M (B∗)−1

t (x),MB
l TB

k g〉MB
l TB

k g

=
∑

(k,l)∈Λ1×Λ2

〈x, (M (B∗)−1

t )∗MB
l TB

k g〉MB
l TB

k g

=
∑

(k,l)∈Λ1×Λ2

〈x,BM−tB
−1BMlB

−1BTkB
−1g〉MB

l TB
k g

=
∑

(k,l)∈Λ1×Λ2

〈x,BMl−tTkB
−1g〉MB

l TB
k g.

Putting l − t = l′ we have l = t + l′, hence the above expression becomes;

SM
(B∗)−1

t (x) =
∑

(k,l′)∈Λ1×Λ′2

〈x,BM ′
lTkB

−1g〉MB
t+l′T

B
k g

= MB
t

∑

(k,l′)∈Λ1×Λ′2

〈x,MB
l′ T

B
k g〉MB

l′ TB
k g

= MB
t St(x),

where St(x) =
∑

(k,l′)∈Λ1×Λ′2

〈x,MB
l′ TB

k g〉MB
l′ T

B
k g.

Hence there are Gabor semi-frame operators Sr and St on H such that
ST

(B∗)−1

r = TB
r Sr and SM

(B∗)−1

t = MB
t St. Now for h ∈ Λ′1,

SrT
(B∗)−1

h (x) =
∑

(k′,l)∈Λ′1×Λ2

〈T (B∗)−1

h (x), MB
l TB

k′ g〉MB
l TB

k′ g

=
∑

(k′,l)∈Λ′1×Λ2

〈(x), (T (B∗)−1

h )∗MB
l TB

k′ g〉MB
l TB

k′ g

=
∑

(k′,l)∈Λ′1×Λ2

〈(x), BT−hMlTk′B
−1g〉MB

l TB
k′ g

=
∑

(k′,l)∈Λ′1×Λ2

〈(x), e2πilh/NBMlTk′−hB−1g〉MB
l TB

k′ g.

Taking k′ − h = k′′,

SrT
(B∗)−1

h (x) =
∑

(k′′,l)∈Λ′1×Λ2

〈(x), e2πilh/NBMlTk′′B
−1g〉MB

l TB
k′′+hg

= TB
h

∑

(k′′,l)∈Λ′1×Λ2

〈(x),MB
l TB

k′′g〉MB
l TB

k′′g

= TB
h Sr(x).

Similarly, for each p ∈ Λ′2, StM
(B∗)−1

p = MB
p St. ¤
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Remark 4.2. It can be noted that if S is a Gabor semi-frame operator as in Propo-
sition 4.1, then the invertibility of S, Sr and St are equivalent. Also it can be seen
that, If B is a unitary operator then these results coincide with results in [13].
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