# SOME TYPES OF SLANT SUBMANIFOLDS OF BRONZE RIEMANNIAN MANIFOLDS 

Bilal Eftal Acet ${ }^{\text {a }}$ and Tuba Acet ${ }^{\text {b,* }}$


#### Abstract

The aim of this article is to examine some types of slant submanifolds of bronze Riemannian manifolds. We introduce hemi-slant submanifolds of a bronze Riemannian manifold. We obtain integrability conditions for the distribution involved in quasi hemi-slant submanifold of a bronze Riemannian manifold. Also, we give some examples about this type submanifolds.


## 1. Introduction

In 1990, B.Y. Chen introduced the geometry of slant submanifolds in complex manifolds [3]. Then this topic was extended to semi-slant, pseudo-slant and bi-slant in different structure. Semi-slant submanifolds in almost Hermitian manifolds were introduced by N. Papagiuc [8]. Semi-slant submanifolds in Sasakian manifolds were studies by J.L. Cabrerizo [7].

Metallic structure was introduced V. W. de Spinadel [12]. Let $p$ and $q$ be positive integers. So, members of the metallic means family are positive solution

$$
x^{2}-p x-q=0,
$$

and this number, which are called $(p, q)$-metallic numbers denoted by [4]

$$
\sigma_{p, q}=\frac{p+\sqrt{p^{2}+4 q}}{2}
$$

By use of metallic means family, in [4], the authors introduced the metallic structure which is given by $J$ of type $(1,1)$-tensor field satisfying

$$
J^{2}=p J+q I .
$$

Received by the editors June 07, 2022. Accepted August 31, 2022.
2010 Mathematics Subject Classification. 53C15.
Key words and phrases. bronze mean, slant submanifold, hemi-slant submanifold, quasi-hemislant submanifold.
*Corresponding author.

Some remarks on this structure were studied by many geometers (see [1, 5, 11, 2, 6]).
If $p=3$ and $q=1$, then $\tilde{J}$ is called bronze structure which satisfies

$$
\tilde{J}^{2}=3 \tilde{J}+I
$$

where $I$ is the identity tensor [9]. In [9], the authors studied the notion of bronze structure on manifolds, using the bronze mean is defined by

$$
\phi_{b r}=\frac{3+\sqrt{13}}{2},
$$

which is the positive solution

$$
x^{2}-3 x-1=0 .
$$

Recently, in [10], twin bronze Riemannian metric was studies and some geometric charecterization was given by author.

In this article, we introduced the notion of hemi-slant and quasi-hemi-slant submanifolds of bronze Riemannian manifolds. Especially, we defined a new example of this structure and we provide some non-trivial examples of this types submanifolds.

## 2. Preliminaries

Firstly, we give definitions and theorems then we give a new example of bronze Riemannian manifolds.

Let $\tilde{N}$ be a differentiable manifold with $(1,1)$-tensor field $\tilde{J}$. Then we say that $\tilde{J}$ is a bronze structure if

$$
\begin{equation*}
\tilde{J}^{2}=3 \tilde{J}+I \tag{2.1}
\end{equation*}
$$

So, ( $\tilde{N}, \tilde{J})$ is called a bronze manifold.
If $(\tilde{N}, \tilde{g})$ is a Riemannian manifold with $\tilde{J}$ bronze structure, such that $\tilde{g}$ is $\tilde{J}$ compatible

$$
\begin{equation*}
\tilde{g}(\tilde{J} U, V)=\tilde{g}(U, \tilde{J} V), \tag{2.2}
\end{equation*}
$$

then $(\tilde{N}, \tilde{g}, \tilde{J})$ is a bronze Riemannian manifold. From (2.2), one can write that

$$
\begin{equation*}
\tilde{g}(\tilde{J} U, \tilde{J} V)=3 \tilde{g}(\tilde{J} U, V)+\tilde{g}(U, V) \tag{2.3}
\end{equation*}
$$

for any $U, V \in \Gamma(T \tilde{N})$.
Proposition 2.1 ([10]). If $\tilde{J}$ is a bronze structure on manifold $\tilde{N}$, then

$$
\tilde{F}=\frac{1}{\sqrt{13}}(2 \tilde{J}-3 I)
$$

is an almost product structure on $\tilde{N}$. Conversely every almost product structure $\tilde{F}$ on $\tilde{N}$ induces two bronze structure satisfies that

$$
\tilde{J}_{1}=\frac{1}{2}(3 I+\sqrt{13} \tilde{F}) \quad \text { and } \quad \tilde{J}_{2}=\frac{1}{2}(3 I-\sqrt{13} \tilde{F}) .
$$

Now, we give a new example of bronze structure
Example 1. Let $\mathbb{R}^{4}$ be a real space and give a map by

$$
\begin{aligned}
& \tilde{J}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4} \\
&\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right) \rightarrow \\
&\left(\phi_{b r} \omega_{1}, \bar{\phi}_{b r} \omega_{2}, \phi_{b r} \omega_{3}, \bar{\phi}_{b r} \omega_{4}\right),
\end{aligned}
$$

where $\phi_{b r}=\frac{3+\sqrt{13}}{2}$ and $\bar{\phi}_{b r}=\frac{3-\sqrt{13}}{2}$. In this case $\tilde{J}$ satisfies the equation (2.1). So, we can say that $\left(\mathbb{R}^{4}, \tilde{J}\right)$ is an example of bronze structure.

Let $N^{n}$ be a submanifold of m-dimensional bronze Riemannian manifold $(\tilde{N}, \tilde{g}, \tilde{J})$.The tangent space of $\tilde{N}$ in a point $x \in N$ can be decomposed by

$$
T_{x} \tilde{N}=T_{x} N \perp T_{x}^{\perp} N .
$$

If we show $f U$ and $t U$, the tangential and normal parts of $\tilde{J} U$, respectively, we can write

$$
\begin{equation*}
\tilde{J} U=f U+t U, \tag{2.4}
\end{equation*}
$$

for any $U \in \Gamma(T N)$.
Similarly for $Z \in \Gamma\left(T^{\perp} N\right)$, the tangential and normal parts of $\tilde{J} Z$ satisfiy

$$
\begin{equation*}
\tilde{J} Z=B Z+C Z . \tag{2.5}
\end{equation*}
$$

If we consider the properties of $f$ and $C$, we have

$$
\begin{align*}
\tilde{g}(f U, V) & =\tilde{g}(U, f V),  \tag{2.6}\\
\tilde{g}(C Z, W) & =\tilde{g}(Z, C W), \tag{2.7}
\end{align*}
$$

for any $U, V \in \Gamma(T N), Z, W \in \Gamma\left(T^{\perp} N\right)$. Also, we have

$$
\begin{equation*}
\tilde{g}(t U, Z)=\tilde{g}(U, B Z) . \tag{2.8}
\end{equation*}
$$

Proposition 2.2. Let $N$ be a submanifold of bronze Riemannian manifold $(\tilde{N}, \tilde{g}, \tilde{J})$. Then for any $U \in \Gamma(T N), Z \in \Gamma\left(T^{\perp} N\right)$, we have

$$
\begin{gather*}
f^{2} U=3 f U+U-B C U,  \tag{2.9}\\
3 t U=f t U+C t U,
\end{gather*}
$$

$$
\begin{gather*}
C^{2} Z=3 C Z+Z-B t Z  \tag{2.11}\\
3 B Z=B f Z+B C Z \tag{2.12}
\end{gather*}
$$

Also, Gauss and Weingarten equations are definmed by

$$
\begin{align*}
& \tilde{\nabla}_{U} V=\nabla_{U} V+h(U, V)  \tag{2.13}\\
& \tilde{\nabla}_{U} Z=-A_{Z} U+\nabla_{U}^{t} Z \tag{2.14}
\end{align*}
$$

where $\tilde{\nabla}$ and $\nabla$ are Levi-Civita connection on $(\tilde{N}, \tilde{g})$ and $(N, g)$, respectively. Moreover

$$
\begin{equation*}
\tilde{g}(h(U, V), Z)=g\left(A_{Z} U, V\right) \tag{2.15}
\end{equation*}
$$

In this paper, we suppose that

$$
\begin{equation*}
\tilde{\nabla} \tilde{J}=0, \tag{2.16}
\end{equation*}
$$

i.e., $\tilde{N}$ is a locally bronze Riemannian manifold.

Lemma 2.3. If $\tilde{N}$ is a locally bronze Riemannian manifold, then

$$
\begin{gather*}
\left(\nabla_{U} f\right) V=A_{Z V} U+B h(U, V)  \tag{2.17}\\
\left(\nabla_{U} t\right) V=C h(U, V)-h(U, f V)  \tag{2.18}\\
\left(\nabla_{U} B\right) Z=A_{C Z} U-f A_{Z} U  \tag{2.19}\\
\left(\nabla_{U} C\right) Z=-h(U, B Z)-t A_{Z} U \tag{2.20}
\end{gather*}
$$

for any $U, V \in \Gamma(T N), Z \in \Gamma\left(T^{\perp} N\right)$.

## 3. Hemi-slant Submanifolds of ( $\tilde{N}, \tilde{g}, \tilde{J}$ )

In this section, we give main results and new type examples for hemi-slant submanifolds of bronze Riemannian manifold $(\tilde{N}, \tilde{g}, \tilde{J})$.

Definition 3.1. Let $(N, g)$ be a submanifold of $(\tilde{N}, \tilde{g}, \tilde{J})$. Then $N$ is called a hemislant submanifold if the following conditions are satisfied:
i) There exist two orthogonal distributions $D_{\alpha}$ and $D_{\beta}$ such that

$$
T N=D_{\alpha} \perp D_{\beta}
$$

ii) The distributions $D_{\alpha}$ is slant with angle $\theta \in\left[0, \frac{\pi}{2}\right]$
iii) The distributions $D_{\beta}$ is anti-invariant, $\tilde{J} D_{\beta} \subseteq \Gamma\left(T^{\perp} N\right)$.

Also, if $\operatorname{dim}\left(D_{\alpha}\right) \cdot \operatorname{dim}\left(D_{\beta}\right) \neq 0$ and $\theta \in\left(0, \frac{\pi}{2}\right)$, then N is called a proper hemi-slant submanifolds.

Example 2. Let $\mathbb{R}^{4}$ be the Euclidean space with the usual Euclidean metric. We define the bronze structure

$$
\begin{aligned}
& \tilde{J}: \quad \mathbb{R}^{4} \rightarrow \mathbb{R}^{4} \\
&\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right) \rightarrow \\
&\left(\phi_{b r} \omega_{1}, \bar{\phi}_{b r} \omega_{2}, \omega_{3}+\frac{3}{2} \omega_{4},-\omega_{3}\right)
\end{aligned}
$$

where $\phi_{b r}=\frac{3+\sqrt{13}}{2}$ and $\bar{\phi}_{b r}=\frac{3-\sqrt{13}}{2}$. One can easily verify that the equation (2.1). So, $\left(\mathbb{R}^{4}, \tilde{J}\right)$ is a new example of bronze Riemannian manifold.

Assume that $N$ is a submanifold of $\left(\mathbb{R}^{4}, \tilde{J}\right)$ defined by

$$
\begin{gathered}
x_{1}=u \cos s, \quad x_{2}=u \sin s \\
x_{3}=v, \quad x_{4}=-2 v
\end{gathered}
$$

Then, a local orthonormal frame on $T N$ given by

$$
\begin{gathered}
\tilde{\Psi}_{1}=\cos s \partial x_{1}+\sin s \partial x_{2} \\
\tilde{\Psi}_{2}=\partial x_{3}-2 \partial x_{4}
\end{gathered}
$$

Thus, we arrive at $\tilde{J}\left(\tilde{\Psi}_{2}\right) \perp S p\left\{\tilde{\Psi}_{1}, \tilde{\Psi}_{2}\right\}$ and $\cos \theta=\frac{\phi_{b r} \cos ^{2} s+\bar{\phi}_{b r} \sin ^{2} s}{\sqrt{\phi_{b r} \cos ^{2} s+\bar{\phi}_{b r} \sin ^{2} s}}$. If we consider $D_{\beta}=\operatorname{Sp}\left\{\tilde{\Psi}_{2}\right\}\left(\tilde{J}\left(\tilde{\Psi}_{2}\right) \subseteq \Gamma\left(T^{\perp} N\right)\right)$ and $D_{\alpha}=\operatorname{Sp}\left\{\tilde{\Psi}_{1}\right\}$ then $N$ is a hemi-slant submanifold in $(\tilde{N}, \tilde{g}, \tilde{J})$.

Example 3. Let $\mathbb{R}^{6}$ be the Euclidean space with the usual Euclidean metric. We define the bronze structure

$$
\left.\begin{array}{rl}
\tilde{J} & : \\
\mathbb{R}^{6} \rightarrow \mathbb{R}^{6} \\
\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}, \omega_{6}\right) & \rightarrow
\end{array} \begin{array}{c}
\phi_{b r} \omega_{1}, \bar{\phi}_{b r} \omega_{2}, \bar{\phi}_{b r} \omega_{3}, \phi_{b r} \omega_{4} \\
\omega_{5}+\frac{3}{2} \omega_{6},-\omega_{5}
\end{array}\right),
$$

where $\phi_{b r}=\frac{3+\sqrt{13}}{2}$ and $\bar{\phi}_{b r}=\frac{3-\sqrt{13}}{2}$. Thus $\left(\mathbb{R}^{6}, \tilde{J}\right)$ is a bronze Riemannian manifold.
Assume that $N$ is a submanifold of $\left(\mathbb{R}^{6}, \tilde{J}\right)$ defined by

$$
\begin{gathered}
x_{1}=u \cos s, \quad x_{2}=u \sin s \\
x_{3}=v, \quad x_{4}=\bar{\phi}_{b r} v \\
x_{5}=\frac{1}{\sqrt{3}} w, \quad x_{6}=-\frac{2}{\sqrt{3}} w
\end{gathered}
$$

Then, we can obtain a local orthonormal frame on $T N$ given by

$$
\tilde{\Psi}_{1}=\cos s \partial x_{1}+\sin s \partial x_{2}
$$

$$
\begin{gathered}
\tilde{\Psi}_{2}=\partial x_{3}+\bar{\phi}_{b r} \partial x_{4}, \\
\tilde{\Psi}_{3}=\frac{1}{\sqrt{3}} \partial x_{5}-\frac{2}{\sqrt{3}} \partial x_{6}
\end{gathered}
$$

So, we get $\tilde{J}\left(\tilde{\Psi}_{2}\right) \perp S p\left\{\tilde{\Psi}_{1}, \tilde{\Psi}_{2}, \tilde{\Psi}_{3}\right\}$ and $\tilde{J}\left(\tilde{\Psi}_{3}\right) \perp S p\left\{\tilde{\Psi}_{1}, \tilde{\Psi}_{2}, \tilde{\Psi}_{3}\right\}$ which gives $\cos \theta=$ $\frac{\phi_{b r} \cos ^{2} s+\bar{\phi}_{b r} \sin ^{2} s}{\sqrt{\phi_{b r} \cos ^{2} s+\bar{\phi}_{b r} \sin ^{2} s}}$. Therefore $D_{\alpha}=S p\left\{\tilde{\Psi}_{1}\right\}$ and $D_{\beta}=S p\left\{\tilde{\Psi}_{2}, \tilde{\Psi}_{3}\right\}$, then $N$ is a hemi-slant submanifold in $\left(\mathbb{R}^{6}, \tilde{g}, \tilde{J}\right)$.

Let $P_{\alpha}$ and $P_{\beta}$ orthogonal projections on $D_{\alpha}$ and $D_{\beta}$, respectively. For $U \in$ $\Gamma(T N)$, we can state

$$
U=P_{\alpha} U+P_{\beta} U
$$

where $P_{\alpha} U \in \Gamma\left(D_{\alpha}\right)$ and $P_{\beta} U \in \Gamma\left(D_{\beta}\right)$.
From the definition of hemi-slant submanifold, we have;
Lemma 3.2. Let $(N, g)$ hemi-slant submanifold of $(\tilde{N}, \tilde{g}, \tilde{J})$. Then

$$
\begin{gather*}
\tilde{J} U=f P_{\alpha} U+t P_{\alpha} U+t P_{\beta} U \\
=f P_{\alpha} U+t U  \tag{3.1}\\
\tilde{J} P_{\beta} U=t P_{\beta} U, \quad f P_{\beta} U=0, \quad f P_{\alpha} U \in \Gamma\left(D_{\alpha}\right), \tag{3.2}
\end{gather*}
$$

for any $U \in \Gamma(T N)$.
Remark 1. If $N$ is a hemi-slant submanifold of $(\tilde{N}, \tilde{g}, \tilde{J})$, then $\tilde{g}\left(\tilde{J} P_{\alpha} U, f P_{\alpha} U\right)=$ $\cos \theta(X)\left\|\tilde{J} P_{\alpha} U\right\|\left\|f P_{\alpha} U\right\|$ and slant angle $\theta(X)$ of the distribution $D_{\alpha}$ is constant.

So, for $U \in \Gamma(T N)$, we have

$$
\begin{align*}
\cos \theta & =\frac{\tilde{g}\left(\tilde{J} P_{\alpha} U, f P_{\alpha} U\right)}{\left\|\tilde{J} P_{\alpha} U\right\|\left\|f P_{\alpha} U\right\|} \\
& =\frac{\left\|f P_{\alpha} U\right\|}{\left\|\tilde{J} P_{\alpha} U\right\|} \tag{3.3}
\end{align*}
$$

Proposition 3.3. Let $N$ be a hemi-slant submanifold of $(\tilde{N}, \tilde{g}, \tilde{J})$. For every $U, Y \in$ $\Gamma(T N)$, we get

$$
\begin{gather*}
\tilde{g}\left(f P_{\alpha} U, f P_{\alpha} Y\right)=\cos ^{2} \theta\left(3 \tilde{g}\left(f P_{\alpha} U, P_{\alpha} Y\right)+\tilde{g}\left(P_{\alpha} U, P_{\alpha} Y\right)\right.  \tag{3.4}\\
\tilde{g}(t U, t Y)=\sin ^{2} \theta\left(3 \tilde{g}\left(f P_{\alpha} U, P_{\alpha} Y\right)+\tilde{g}\left(P_{\alpha} U, P_{\alpha} Y\right)\right. \tag{3.5}
\end{gather*}
$$

Proposition 3.4. Let $N$ be a hemi-slant submanifold of $(\tilde{N}, \tilde{g}, \tilde{J})$ with slant angle $\theta$ of $D_{\beta}$. In this case

$$
\begin{align*}
& \left(f P_{\alpha}\right)^{2}=\cos ^{2} \theta(3 f P \alpha+I)  \tag{3.6}\\
& \nabla\left(f P_{\alpha}\right)^{2}=3 \cos ^{2} \theta \nabla\left(f P_{\alpha}\right) \tag{3.7}
\end{align*}
$$

Now, we give the conditions for the integrability of the distribution of $(\tilde{N}, \tilde{g}, \tilde{J})$.
Theorem 3.5. Let $N$ be a hemi-slant submanifold of $(\tilde{N}, \tilde{g}, \tilde{J})$. In this case, for any $U, V \in \Gamma\left(D_{\alpha}\right)$

$$
\begin{equation*}
\nabla_{U} F V-\nabla_{V} f U+A_{N U} V-A_{N V} U \in \Gamma\left(D_{\alpha}\right) \tag{3.8}
\end{equation*}
$$

Proof. From (2.6), for any $U, V \in \Gamma\left(D_{\alpha}\right)$ and $W \in \Gamma\left(D_{\beta}\right)$, we find

$$
\tilde{g}(f[U, V], Z)=\tilde{g}([U, V], f Z)=0
$$

which gives $f Z=0$. So, we arrive at $f[U, V] \in \Gamma\left(D_{\alpha}\right)$ and (3.8).
Theorem 3.6. Let $N$ be a hemi-slant submanifold of $(\tilde{N}, \tilde{g}, \tilde{J})$. Then $D_{\alpha}$ is integrable.

Proof. By using (2.3), for every $U, V \in \Gamma\left(D_{\alpha}\right)$ and $Z \in \Gamma\left(D_{\beta}\right)$, we

$$
\tilde{g}\left(\tilde{\nabla}_{U} V, Z\right)=\tilde{g}\left(\tilde{J} \tilde{\nabla}_{U} V, \tilde{J} Z\right)-3 \tilde{g}\left(\tilde{\nabla}_{U} V, \tilde{J} Z\right)
$$

From the definition of hemi-slant submanifold of a bronze Riemannian manifold we get $\tilde{J} Z=t Z, Z \in \Gamma\left(D_{\beta}\right)$. So, we have

$$
\tilde{g}\left(\tilde{\nabla}_{U} V, Z\right)=\tilde{g}\left(\tilde{\nabla}_{U} \tilde{J} V, t Z\right)-3 \tilde{g}\left(\tilde{\nabla}_{U} V, t Z\right)
$$

From (2.13), we get

$$
\begin{aligned}
\tilde{g}\left(\tilde{\nabla}_{U} V, Z\right)= & \tilde{g}(h(U, f V), t Z)+\tilde{g}\left(\nabla \frac{\perp}{U} t V, t Z\right) \\
& -3 \tilde{g}(h(U, V), t Z)
\end{aligned}
$$

In view of (2.18), we can write $\nabla_{U}^{\perp} t V=C h(U, V)-h(u, f V)+t \nabla_{U} V$ for any $U, V \in \Gamma\left(D_{\alpha}\right)$, which gives

$$
\begin{aligned}
\tilde{g}\left(\tilde{\nabla}_{U} V, Z\right)= & \tilde{g}(C h(U, V), t Z)+\tilde{g}\left(t \nabla_{U} V, t Z\right) \\
& -3 \tilde{g}(h(U, V), t Z)
\end{aligned}
$$

From (2.18) and symmetric properties of $h$, we arrive at

$$
\begin{aligned}
\tilde{g}([U, V], Z) & =\tilde{g}\left(t \nabla_{U} V, t Z\right)-\tilde{g}\left(t \nabla_{V} U, t Z\right) \\
& =\tilde{g}(t[U, V], t Z)
\end{aligned}
$$

Thus from (3.5), weobtain

$$
\tilde{g}([U, V], Z)=\sin ^{2} \theta\binom{3 \tilde{g}\left(P_{\alpha}[U, V], f P_{\alpha} Z\right)}{+\tilde{g}\left(P_{\alpha}[U, V], P_{\alpha} Z\right.} .
$$

Since $P_{\alpha} Z$ is the projection of $Z$ on $\Gamma\left(D_{\alpha}\right)$ then $P_{\alpha} Z=0$, for $Z \in \Gamma\left(D_{\beta}\right)$. o, we arrive at

$$
\tilde{g}([U, V], Z)=0,
$$

which gives proof of our assertion.
Theorem 3.7. Let $N$ be a hemi-slant submanifold of $(\tilde{N}, \tilde{g}, \tilde{J})$. Then $D_{\beta}$ is integrable if and only if

$$
\begin{equation*}
A_{t Z} W=0, \tag{3.10}
\end{equation*}
$$

for $Z, W \in \Gamma\left(D_{\beta}\right)$.
Proof. For $Z, W \in \Gamma\left(D_{\beta}\right)$, we can write $f Z=f W=0$. So

$$
\nabla_{Z} f W=\nabla_{W} f Z=0 .
$$

In view of (3.2) for $Z, W \in \Gamma\left(D_{\beta}\right), f([Z, W])=0$ iff $A_{t Z} W=A_{t W} Z=0$. From (2.17), we have

$$
\begin{aligned}
0 & =\tilde{g}\left(\left(\nabla_{U} f\right) Z, W\right)=\tilde{g}\left(A_{t Z} U, W\right)+\tilde{g}(B h(U, Z), W) \\
& =\tilde{g}\left(\nabla_{U} Z, f W\right),
\end{aligned}
$$

from which we find $\tilde{g}\left(A_{t Z} U, W\right)=-\tilde{g}(B h(U, Z), W)$.
If we consider for $U \in \Gamma(T N), Z, W \in \Gamma\left(D_{\beta}\right)$, we get

$$
\begin{aligned}
\tilde{g}\left(A_{t Z} U, W\right) & =\tilde{g}\left(A_{t W} U, Z\right)=\tilde{g}\left(A_{t W} Z, U\right) \\
& =\tilde{g}(h(U, Z), t W)=\tilde{g}(t h(U, Z), W),
\end{aligned}
$$

then we arrive at (3.10).
Contrarily, we suppose that $A_{t W} Z=0$, for $Z, W \in \Gamma\left(D_{\beta}\right)$. In this case, we get $\tilde{g}\left(A_{t W} Z, U\right)=\tilde{g}(B h(U, Z), W)$. From (2.17) with last equation for $U \in \Gamma\left(D_{\alpha}\right)$, $Z, W \in \Gamma\left(D_{\beta}\right)$, we find

$$
0=\tilde{g}\left(\left(\nabla_{Z} f\right) W, U\right)=\tilde{g}\left(f \nabla_{Z} W, U\right)=\tilde{g}\left(\nabla_{Z} W, f U\right) .
$$

Also, we know that $f\left(D_{\alpha}\right)=D_{\alpha}$ we arrive at $\nabla_{Z} W \in \Gamma\left(D_{\beta}\right)$. So the assertion was proved.

Now, we consider mixed totally geodesic hemi-slant submanifolds of Bronze Riemannian manifold. Firstly we give following.

Definition 3.8. Let $N$ be a hemi-slant submanifold of $(\tilde{N}, \tilde{g}, \tilde{J})$. Then $N$ is called a mixed totally geodesic submanifold if for $U \in \Gamma\left(D_{\alpha}\right)$ and $Z \in \Gamma\left(D_{\beta}\right)$

$$
\begin{equation*}
h(U, Z)=0 \tag{3.11}
\end{equation*}
$$

Theorem 3.9. Let $N$ be a hemi-slant submanifold of $(\tilde{N}, \tilde{g}, \tilde{J})$. Then $N$ is a mixed totally geodesic submanifold if
i) $A_{N} U \in \Gamma\left(D_{\alpha}\right)$,
ii) $A_{N} Z \in \Gamma\left(D_{\beta}\right)$,
for $U \in \Gamma\left(D_{\alpha}\right)$ and $Z \in \Gamma\left(D_{\beta}\right)$.
Proof. For any $U \in \Gamma\left(D_{\alpha}\right)$ and $Z \in \Gamma\left(D_{\beta}\right)$, from (2.15), we have

$$
\tilde{g}(h(U, Z), N)=\tilde{g}\left(A_{N} U, Z\right)=\tilde{g}\left(A_{N} Z, U\right)
$$

which yields $N$ is a mixed totally geodesic submanifold if and only if $A_{N} U \in \Gamma\left(D_{\alpha}\right)$ and $A_{N} Z \in \Gamma\left(D_{\beta}\right)$.

Theorem 3.10. Let $N$ be a hemi-slant submanifold of $(\tilde{N}, \tilde{g}, \tilde{J}) . \operatorname{If}\left(\tilde{\nabla}_{U} t\right) Z=0$, for $U \in \Gamma\left(D_{\alpha}\right)$ and $Z \in \Gamma\left(D_{\beta}\right)$, then $N$ is a mixed totally geodesic submanifold in $\tilde{N}$.

Proof. From $\left(\tilde{\nabla}_{U} t\right) Z=0$ and (2.18) with $f Z=0$ we find

$$
h(Z, f U)=n h(U, Z)=h(U, f Z)=0
$$

for $U \in \Gamma\left(D_{\alpha}\right)$ and $Z \in \Gamma\left(D_{\beta}\right)$.
In view of (3.6), we get

$$
3 \cos ^{2} \theta C h(Z, f U)+\cos ^{2} \theta h(Z, U)=0
$$

By use of $C h(Z, f U)=0$ and $\theta \neq \frac{\pi}{2}$ we arrive at $h(U, Z)=0$.

## 4. Quasi Hemi-slant Submanifolds of $(\tilde{N}, \tilde{g}, \tilde{J})$

Now, we introduce and characterize quasi hemi-slant submanifolds of bronze Riemannian manifold $(\tilde{N}, \tilde{g}, \tilde{J})$ and give an examples of this type submanifold.

Definition 4.1. Let $(N, g)$ be a submanifold of $(\tilde{N}, \tilde{g}, \tilde{J})$. Then $N$ is called a quasi hemi-slant submanifold if the following conditions are satisfied:
i) There exist orthogonal distributions $D_{\gamma}, D_{\alpha}$ and $D_{\beta}$ such that

$$
T N=D_{\gamma} \perp D_{\alpha} \perp D_{\beta}
$$

ii) The distributions $D_{\gamma}$ is invariant i.e., $\tilde{J}\left(D_{\gamma}\right)=D_{\gamma}$,
iii) The distributions $D_{\alpha}$ is slant with angle $\theta$,
iv) The distributions $D_{\beta}$ is anti-invariant, $\tilde{J} D_{\beta} \subseteq \Gamma\left(T^{\perp} N\right)$.

Also, we say that quasi hemi-slant submanifolds are proper if $D_{\gamma} \neq\{0\}, D_{\beta} \neq\{0\}$ and $\theta \neq\left(0, \frac{\pi}{2}\right)$.

Example 4. Let $\mathbb{R}^{8}$ be the Euclidean space with the usual Euclidean metric. We define the bronze structure

$$
\begin{aligned}
\tilde{J} & : \quad \mathbb{R}^{8} \rightarrow \mathbb{R}^{8} \\
\left(\omega_{1}, \omega_{2}, \ldots, \omega_{8}\right) & \rightarrow\binom{\phi_{b r} \omega_{1}, \phi_{b r} \omega_{2}, \bar{\phi}_{b r} \omega_{3}, \phi_{b r} \omega_{4},}{\omega_{5}+\frac{3}{2} \omega_{6},-\omega_{5}, \bar{\phi}_{b r} \omega_{7}, \bar{\phi}_{b r} \omega_{8}},
\end{aligned}
$$

where $\phi_{b r}=\frac{3+\sqrt{13}}{2}$ and $\bar{\phi}_{b r}=\frac{3-\sqrt{13}}{2}$. One can easily verify that the equation (2.1). So, $\left(\mathbb{R}^{8}, \tilde{J}\right)$ is a new example of bronze Riemannian manifold.

Assume that $N$ is a submanifold of $\left(\mathbb{R}^{8}, \tilde{J}\right)$ defined by

$$
\begin{array}{cl}
x_{1}=\frac{u_{1}+3 u_{2}}{2}, & x_{2}=\frac{u_{1}+3 u_{2}}{2}, \\
x_{3}=u_{3} \cos s, & x_{4}=u_{3} \sin s, \\
x_{5}=u_{4}, & x_{6}=-u_{4}, \\
x_{7}=\frac{u_{5}+\sqrt{13} u_{6}}{2}, & x_{8}=\frac{u_{5}+\sqrt{13} u_{6}}{2}
\end{array}
$$

Then, a local orthonormal frame on $T N$ given by

$$
\begin{gathered}
\tilde{\Psi}_{1}=\frac{1}{2}\left(\partial x_{1}+\partial x_{2}\right), \\
\tilde{\Psi}_{2}=\frac{3}{2}\left(\partial x_{1}+\partial x_{2}\right), \\
\tilde{\Psi}_{3}=\cos s \partial x_{3}+\sin s \partial x_{4}, \\
\tilde{\Psi}_{4}=\partial x_{5}-2 \partial x_{6} \\
\tilde{\Psi}_{5}=\frac{1}{2}\left(\partial x_{7}+\partial x_{8}\right), \\
\tilde{\Psi}_{6}=\frac{\sqrt{13}}{2}\left(\partial x_{7}+\partial x_{8}\right),
\end{gathered}
$$

Thus, we get $\tilde{J}\left(\tilde{\Psi}_{4}\right) \perp S p\left\{\tilde{\Psi}_{1}, \tilde{\Psi}_{2}, \tilde{\Psi}_{3}, \tilde{\Psi}_{4}, \tilde{\Psi}_{5}, \tilde{\Psi}_{6}\right\}$ and $\cos \theta=\frac{\phi_{b r} \cos ^{2} s+\bar{\phi}_{b r} \sin ^{2} s}{\sqrt{\phi_{b r} \cos ^{2} s+\bar{\phi}_{b r} \sin ^{2} s}}$. If we consider $D_{\gamma}=\operatorname{Sp}\left\{\tilde{\Psi}_{1}, \tilde{\Psi}_{2}, \tilde{\Psi}_{5}, \tilde{\Psi}_{6}\right\}, D_{\alpha}=\operatorname{Sp}\left\{\tilde{\Psi}_{3}\right\}$ and $D_{\beta}=\operatorname{Sp}\left\{\tilde{\Psi}_{4}\right\}\left(\tilde{J}\left(\tilde{\Psi}_{4}\right) \subseteq\right.$ $\Gamma\left(T^{\perp} N\right)$ ) and then $N$ is a quasi hemi-slant submanifold in ( $\left.\tilde{N}, \tilde{g}, \tilde{J}\right)$.

Let $D_{\gamma}, P_{\alpha}$ and $P_{\beta}$ orthogonal projections on $D_{\gamma}, D_{\alpha}$ and $D_{\beta}$, respectively. For $U \in \Gamma(T N)$, we have

$$
\begin{equation*}
U=P_{\gamma} U+P_{\alpha} U+P_{\beta} U \tag{4.1}
\end{equation*}
$$

where $P_{\gamma} U \in \Gamma\left(D_{\gamma}\right), P_{\alpha} U \in \Gamma\left(D_{\alpha}\right)$ and $P_{\beta} U \in \Gamma\left(D_{\beta}\right)$.
In view of (4.1), we get

$$
\tilde{J} U=f P_{\gamma} U+t P_{\gamma} U+f P_{\alpha} U+t P_{\alpha} U+f P_{\beta} U+t P_{\beta} U
$$

Since $\tilde{J}\left(D_{\gamma}\right)=D_{\gamma}, \tilde{J} D_{\beta} \subseteq \Gamma\left(T^{\perp} N\right)$, then $t P_{\alpha} U=0=t P_{\beta} U$. So, we obtain

$$
\begin{equation*}
\tilde{J} U=f P_{\gamma} U+t P_{\gamma} U+t P_{\alpha} U+t P_{\beta} U . \tag{4.2}
\end{equation*}
$$

For $U, V \in \Gamma(T N)$, we have

$$
\begin{gathered}
\nabla_{U} f V-A_{t V} U-f \nabla_{U} V-B h(U, V)=0, \\
h(U, f V)+\nabla_{U}^{\frac{1}{U}} t V-t\left(\nabla_{U} V\right)-C h(U, V)=0 .
\end{gathered}
$$

Also, $Z, W \in \Gamma\left(T^{\perp} N\right)$, we get

$$
\begin{aligned}
& f([Z, W])=A_{\tilde{J} Z} W-A_{\tilde{J} W} Z, \\
& t([Z, W])=\nabla_{Z}^{\perp} \tilde{J} W-\nabla_{W}^{\perp} \tilde{J} Z .
\end{aligned}
$$

Now, we examine integrability conditions for the distribution involved in submanifold.

Theorem 4.2. Let $N$ be a quasi hemi-slant submanifold of $(\tilde{N}, \tilde{g}, \tilde{J})$. Then $D_{\gamma}$ is integrable if and only if

$$
g\left(\nabla_{U} f V-\nabla_{V} f U, f P_{\alpha} X\right)=g\left(h(V, f U)-h(U, f V), t P_{\alpha} X+t P_{\beta} X\right)
$$

and

$$
g\left(\nabla_{U} V-\nabla_{V} U, f P_{\alpha} X\right)=g\left(h(V, U)-h(U, V), t P_{\alpha} X+t P_{\beta} X\right)
$$

for $U, V \in \Gamma\left(D_{\gamma}\right), X \in \Gamma\left(D_{\alpha} \perp D_{\beta}\right)$.

Proof. For $U, V \in \Gamma\left(D_{\gamma}\right), X=P_{\alpha} X+P_{\beta} X \in \Gamma\left(D_{\alpha} \perp D_{\beta}\right)$, using (2.3),(2.13), (2.16) with (2.4), we get

$$
\begin{aligned}
g([U, V], X)= & g\left(\tilde{J} \tilde{\nabla}_{U} V, \tilde{J} X\right)-g\left(\tilde{J} \tilde{\nabla}_{V} U, \tilde{J} X\right) \\
& -3 g\left(\tilde{J} \tilde{\nabla}_{U} V, X\right)+3 g\left(\tilde{J} \tilde{\nabla}_{V} U, X\right) \\
= & g\left(\tilde{\nabla}_{U} \tilde{J} V, \tilde{J} X\right)-g\left(\tilde{\nabla}_{V} \tilde{J} U, \tilde{J} X\right) \\
& -3 g\left(\tilde{\nabla}_{U} V, \tilde{J} X\right)+3 g\left(\tilde{\nabla}_{V} U, \tilde{J} X\right) \\
= & g\left(\nabla_{U} f V-\nabla_{V} f U, f P_{\alpha} X\right) \\
& -g\left(\nabla_{U} V-\nabla_{V} U, f P_{\alpha} X\right) \\
& +g\left(h(V, f U)-h(U, f V), t P_{\alpha} X+t P_{\beta} X\right) \\
& -g\left(h(V, U)-h(U, V), t P_{\alpha} X+t P_{\beta} X\right) .
\end{aligned}
$$

So, the results follows from above equation.
Theorem 4.3. Let $N$ be a quasi hemi-slant submanifold of $(\tilde{N}, \tilde{g}, \tilde{J})$. Then $D_{\alpha}$ is integrable if and only if

$$
g\left(A_{t W} Z-A_{t Z} W, f P_{\alpha} Y\right)=g\left(\nabla \frac{1}{Z} t W-\nabla_{W}^{\perp} t Z, t P_{\beta} Y\right),
$$

and

$$
g\left(\nabla_{Z} f W-\nabla_{W} f Z, P_{\gamma} Y+P_{\beta} Y\right)=g\left(A_{t W} Z-A_{t Z} W, P_{\gamma} Y+P_{\beta} Y\right),
$$

for $Z, W \in \Gamma\left(D_{\alpha}\right), Y \in \Gamma\left(D_{\gamma} \perp D_{\beta}\right)$.
Proof. For $Z, W \in \Gamma\left(D_{\alpha}\right), Y \in \Gamma\left(D_{\alpha} \perp D_{\beta}\right)$, using (2.3), (2.16) with (2.4), we have

$$
\begin{aligned}
g([Z, W], Y)= & g\left(\tilde{J} \tilde{\nabla}_{Z} W, \tilde{J} Y\right)-g\left(\tilde{\nabla}_{W} Z, \tilde{J} Y\right) \\
& -3 g\left(\tilde{J} \tilde{\nabla}_{Z} W, Y\right)+3 g\left(\tilde{J} \tilde{\nabla}_{W} Z, Y\right) \\
= & g\left(\tilde{\nabla}_{Z} \tilde{J} W, \tilde{J} Y\right)-g\left(\tilde{\nabla}_{W} \tilde{J} Z, \tilde{J} Y\right) \\
& -3 g\left(\tilde{\nabla}_{Z} \tilde{J} W, Y\right)+3 g\left(\tilde{\nabla}_{W} \tilde{J} Z, Y\right) \\
= & g\left(\tilde{\nabla}_{Z} f W, \tilde{J} Y\right)+g\left(\tilde{\nabla}_{Z} t W, \tilde{J} Y\right) \\
& -g\left(\tilde{\nabla}_{W} f Z, \tilde{J} Y\right)-g\left(\tilde{\nabla}_{W} t Z, \tilde{J} Y\right) \\
& -3 g\left(\tilde{\nabla}_{Z} \tilde{J} W, Y\right)+3 g\left(\tilde{\nabla}_{W} \tilde{J} Z, Y\right) \\
= & -g\left(A_{t W} Z-A_{t Z} W, \tilde{J} Y\right)+g\left(\nabla \frac{1}{Z} t W-\nabla_{W}^{\perp} t Z, \tilde{J} Y\right) \\
& +g\left(\tilde{\nabla}_{Z} \tilde{J} f W, Y\right)-g\left(\tilde{\nabla}_{W} \tilde{J} f Z, Y\right) \\
& -3 g\left(\tilde{\nabla}_{Z} \tilde{J} W, Y\right)+3 g\left(\tilde{\nabla}_{W} \tilde{J} Z, Y\right)
\end{aligned}
$$

$$
\begin{aligned}
= & -g\left(A_{t W} Z-A_{t Z} W, f P_{\gamma} Y\right) \\
& +g\left(\nabla_{Z}^{\frac{1}{Z}} t W-\nabla_{W}^{\perp} t Z, t P_{\beta} Y\right) \\
& -3 g\left(\tilde{\nabla}_{Z} \tilde{J} W, Y\right)+3 g\left(\tilde{\nabla}_{W} \tilde{J} Z, Y\right) \\
= & -g\left(A_{t W} Z-A_{t Z} W, f P_{\gamma} Y\right) \\
& +g\left(\nabla_{Z} \frac{1}{} t W-\nabla_{W}^{\perp} t Z, t P_{\beta} Y\right) \\
& -3 g\left(\nabla_{Z} f W-\nabla_{W} f Z, P_{\gamma} Y+P_{\beta} Y\right) \\
& +3 g\left(A_{t W} Z-A_{t Z} W, P_{\gamma} Y+P_{\beta} Y\right) .
\end{aligned}
$$

So, the proof is completed.
Theorem 4.4. Let $N$ be a quasi hemi-slant submanifold of $(\tilde{N}, \tilde{g}, \tilde{J})$. Then $D_{\beta}$ is integrable if and only if

$$
g\left(A_{\tilde{J} Z} W-A_{\tilde{J} W} Z-\nabla_{Z} W+\nabla_{W} Z, f P_{\gamma} Y+f P_{\alpha} Y\right)=g\left(\nabla_{W}^{\perp} \tilde{J} Z-\nabla_{Z}^{\frac{1}{Z}} \tilde{J}, t P_{\alpha} Y\right),
$$

$$
\text { for } Z, W \in \Gamma\left(D_{\beta}\right), Y \in \Gamma\left(D_{\gamma} \perp D_{\alpha}\right) \text {. }
$$

Proof. For $Z, W \in \Gamma\left(D_{\beta}\right), Y \in \Gamma\left(D_{\gamma} \perp D_{\alpha}\right)$, using (2.3), (2.16) with (2.4),we find

$$
\begin{aligned}
g([Z, W], Y)= & g\left(\tilde{J} \tilde{\nabla}_{Z} W, \tilde{J} Y\right)-g\left(\tilde{\nabla}_{W} Z, \tilde{J} Y\right) \\
& -3 g\left(\tilde{J} \tilde{\nabla}_{Z} W, Y\right)+3 g\left(\tilde{J} \tilde{\nabla}_{W} Z, Y\right) \\
= & g\left(\tilde{\nabla}_{Z} \tilde{J} W, \tilde{J} Y\right)-g\left(\tilde{\nabla}_{W} \tilde{J} Z, \tilde{J} Y\right) \\
& -3 g\left(\tilde{\nabla}_{Z} \tilde{J} W, Y\right)+3 g\left(\tilde{\nabla}_{W} \tilde{J} Z, Y\right) \\
= & g\left(A_{\tilde{J} Z} W, f P_{\gamma} Y+f P_{\alpha} Y\right)-g\left(A_{\tilde{J} W} Z, f P_{\gamma} Y+f P_{\alpha} Y\right) \\
& +g\left(\nabla_{Z}^{\perp} \tilde{J} W, t P_{\alpha} Y\right)-g\left(\nabla_{W}^{\perp} \tilde{J} Z, t P_{\alpha} Y\right) \\
& -3 g\left(\nabla_{Z} W, f P_{\gamma} Y+f P_{\alpha} Y\right) \\
& +3 g\left(\nabla_{W} Z, f P_{\gamma} Y+f P_{\alpha} Y\right),
\end{aligned}
$$

which gives proof of our assertion.
Theorem 4.5. Let $N$ be a quasi hemi-slant submanifold of $(\tilde{N}, \tilde{g}, \tilde{J})$. Then $D_{\gamma}$ defines a totally geodesic foliation on $N$ if and only if

$$
g\left(\nabla_{U} f V-3 \nabla_{U} V, f P_{\alpha} X\right)=g\left(h(U, f V)-3 h(U, V), t P_{\alpha} X+t P_{\beta} X\right),
$$

and

$$
g\left(\nabla_{U} f V-3 \nabla_{U} V, B W\right)=g(h(U, f V)-3 h(U, V), C W)
$$

for $U, V \in \Gamma\left(D_{\gamma}\right), X \in \Gamma\left(D_{\alpha} \perp D_{\beta}\right)$ and $W \in \Gamma\left(T^{\perp} N\right)$.

Proof. For $U, V \in \Gamma\left(D_{\gamma}\right), X \in \Gamma\left(D_{\alpha} \perp D_{\beta}\right)$ using (2.3), (2.16) with (2.4), we obtain

$$
\begin{align*}
g\left(\tilde{\nabla}_{U} V, X\right)= & g\left(\tilde{\nabla}_{U} f V, \tilde{J} X\right)-3\left(\tilde{\nabla}_{U} V, \tilde{J} X\right) \\
= & g\left(\nabla_{U} f V, f P_{\alpha} X\right)+g\left(h(U, f V), t P_{\alpha} X+t P_{\beta} X\right) \\
& -3\left(\nabla_{U} V, f P_{\alpha} X\right)-3 g\left(h(U, V), t P_{\alpha} X+t P_{\beta} X\right) . \tag{4.3}
\end{align*}
$$

Now, for $W \in \Gamma\left(T^{\perp} N\right)$ and $U, V \in \Gamma\left(D_{\gamma}\right)$, we get

$$
\begin{align*}
g\left(\tilde{\nabla}_{U} V, W\right)= & g\left(\tilde{\nabla}_{U} f V, \tilde{J} W\right)-3\left(\tilde{\nabla}_{U} V, \tilde{J} W\right) \\
= & g\left(\nabla_{U} f V, B W\right)+g(h(U, f V), C W) \\
& -g\left(\nabla_{U} V, B W\right)+g(h(U, V), C W) . \tag{4.4}
\end{align*}
$$

So from (4.3) and (4.4), the result follows.

## References

1. A.M. Blaga \& C.E. Hretcanu: Invariant, anti-invariant and slant submanifolds of metallic Riemannian manifolds. Novi Sad J. Math. 48 (2018), 55-80.
2. B.E. Acet: Lightlike hypersurfaces of metallic semi-Riemannian manifolds. Int. J. Geo. Meth. Mod. Phys. 15 (2018), 185-201.
3. B.-Y. Chen: Multiplicative transformations. Geometry of slant submanifolds, Katholike Universiteit Leuven, Louvain (1990), 564-570.
4. C.E. Hretcanu \& M.C. Crasmareanu: Metallic structure on Riemannian manifolds. Rev. Un. Mat. Argen. 54 (2013), 15-27.
5. C.E. Hretcanu \& A.M. Blaga: Submanifolds in metallic semi-Riemannian manifolds. Differ. Geom. Dynm. Syst. 20 (2018), 83-97.
6. F.E. Erdoğan: Transversal lightlike submanifolds of metallic semi-Riemannian manifolds. Turk. J. Math. 42 (2018), 3133-3148.
7. J.L. Cabrerizo, A. Carriazo, L.M. Fernandez \& M. Fernandez: Slant submanifolds in Sasakian manifolds. Glasg. Math. J. 42 (2000), 125-138.
8. N. Papaghiuc: Semi-slant submanifolds of a Kaehlerian manifold. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 40 (1994), 55-61.
9. P.K. Pandey \& Sameer: Bronze differential geometry. J. Sci. and Arts. 4 (2018), 973980.
10. R. Çakan Akpınar: On bronze Riemannian structure. Tbilisi Math. J. 13 (2000), 161169.
11. S. Yüksel Perktaş, F.E. Erdoğan \& B.E. Acet: Lightlike submanifolds of metallic semiRiemannian manifolds. Filomat 34 (2020), 1781-1794
12. V.W. Spinadel: The metallic means family and forbidden symmetries. Int. Math. J. 2 (2002), 279-288.
${ }^{\text {a Professor: Department of Mathematics, Adiyaman University, Adiyaman 02040, Turkey }}$ Email address: eacet@adiyaman.edu.tr
${ }^{\text {b }}$ Professor: Department of Mathematics, Inonu University, Malatya 44210, Turkey Email address: tubaact@gmail.com
