Acknowledgement
본 연구는 국토교통부의 국토교통기술사업화지원사업의 연구비지원에 의해 수행되었음. [과제명 : 비접촉 생체정보 측정기능이 포함된 스마트 디퓨저 기반 거주자 맞춤형 Home-HAS(Health, Air, Safety) 서비스 개발] [과제번호 : 21TBIP-C161696-01]
References
- IEA, "Global EV Outlook 2021: Accelerating ambitions despite the pandemic"(www.iea.org)
- Y. Sim, S. J. Moon, & J. Y. Lee, "A Study on Korean Sentiment Analysis Rate Using Neural Network and Ensemble Combination", International Journal of Advanced Culture Technology, Vol. 9, No. 4, pp 268-273, 2021. https://doi.org/10.17703/IJACT.2021.9.4.268
- Srivathsa, C. R., Dhanasekhar, S., & Trilok, J., "IOT Based Smart Solutions For EV (Doctoral dissertation", CMR Institute of Technology, Bangalore), 2020.
- Rahim, M. A., Rahman, M. A., Rahman, M. M., Asyhari, A. T., Bhuiyan, M. Z. A., & Ramasamy, D., "Evolution of IoT-enabled connectivity and applications in automotive industry: A review", Vehicular Communications, Vol. 27, pp 100285, 2021. DOI:10.1016/j.vehcom.2020.100285
- World Health Organization, "Global status report on road safety 2018" (www.who.int)
- Chowdhury, M. E., El Beheri, S. H., Albardawil, M. N., Moustafa, A. K. M. N., Halabi, O., & Kiranyaz, M. S., "Driver drowsiness detection study using heart rate variability analysis in virtual reality environment", In Qatar Foundation Annual Research Conference Proceedings Volume Issue 3, Vol. 2018, No. 3, pp ICTPD1132., 2018.
- Vicente, J., Laguna, P., Bartra, A., & Bailon, R., "Drowsiness detection using heart rate variability", Medical & biological engineering & computing, Vol. 54, No. 6, pp 927-937, 2016. https://doi.org/10.1007/s11517-015-1448-7
- Ramzan, M., Khan, H. U., Awan, S. M., Ismail, A., Ilyas, M., & Mahmood, A., "A survey on state-of-the-art drowsiness detection techniques", IEEE Access, Vol. 7, pp 61904-61919, 2019. DOI: 10.1109/access.2019.2914373
- Yun, Y., Lee, J., Kim, J., & Kim, Y., "Detection scheme of heart and respiration signals for a driver of car with a doppler radar", Journal of the Society of Disaster Information, Vol. 16, No. 1, pp 87-95, 2020. https://doi.org/10.15683/KOSDI.2020.3.31.087
- Min J. H., Lee J. W., Kim K. H., "A Basic Study on Realtime Estimating Respiration of Ballistocardiogram in Non-Invasive Way Using Finite Impulse Response Filter", The Transactions of the Korean Institute of Electrical Engineers (KIEE), Vol. 68, No. 7, pp 879-883, 2019. https://doi.org/10.5370/kiee.2019.68.7.879
- Yang, C., Ku, G. W., Lee, J. G., & Kim, K., "Improving the Accuracy of Biosignal Analysis Using BCG by Applying a Signal-to-Noise Ratio and Similarity-Based Channel Selection Algorithm", Journal of Electrical Engineering & Technology, Vol. 16, No. 2, pp 1043-1050, 2021. https://doi.org/10.1007/s42835-020-00601-8
- Achten, H., & Rojer, G., "Heart rate analysis using BCG: Determining the heart rate with an under the mattress sensor", Delft University of Technology, 2020.
- Ma, Y., Tian, F., Zhao, Q., & Hu, B., "Design and application of mental fatigue detection system using non-contact ECG and BCG measurement", In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp 1508-1513, 2018.
- Hafiz, M. A., Hashem, A. M., Khan, A. A. S., Rashid, M. H., & Faruqui, M. A. K., "Implementation of non-contact bed embedded ballistocardiogram signal measurement and valvular disease detection from this BCG signal", International Journal of Medical Engineering and Informatics, Vol. 13, No. 4, pp 289-296, 2021. https://doi.org/10.1504/IJMEI.2021.115970
- Janjua, G., Guldenring, D., Finlay, D., & McLaughlin, J., "Wireless chest wearable vital sign monitoring platform for hypertension", In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 821-824, 2017.
- Guo, Y., & Zhang, J., "Shock absorbing characteristics and vibration transmissibility of honeycomb paperboard", Shock and Vibration, Vol. 11, No. 5-6, pp 521-531, 2004. https://doi.org/10.1155/2004/936804
- Yang, C., Ku, G. W., Lee, J. G., & Kim, K., "Improving the Accuracy of Biosignal Analysis Using BCG by Applying a Signal-to-Noise Ratio and Similarity-Based Channel Selection Algorithm", Journal of Electrical Engineering & Technology 16.2, p.1043-1050, 2021. https://doi.org/10.1007/s42835-020-00601-8
- Van Hal, B., Rhodes, S., Dunne, B., & Bossemeyer, R., "Low-cost EEG-based sleep detection", In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 4571-4574, 2014.
- Lal, S. K., Craig, A., Boord, P., Kirkup, L., & Nguyen, H., "Development of an algorithm for an EEG-based driver fatigue countermeasure", Journal of safety Research, Vol. 34, No. 3, pp 321-328, 2003., DOI:10.1016/S0022-4375(03)00027-6
- Kweon, Y. S., Kwak, H. G., Shin, G. H., & Lee, M., "Automatic micro-sleep detection under car-driving simulation environment using nightsleep EEG", In 2021 9th International Winter Conference on Brain-Computer Interface (BCI), pp. 1-6, 2021.
- Dreem Deadband (https://dreem.com/)
- Choi Se Jin, "A Method for accelerating training of Convolutional Neural Network", The Journal of the Convergence on Culture Technology, Vol. 3, no.4, pp. 171-175, 2017. DOI:10.17703/JCCT.2017.3.4.171
- YuJeong Sim, Seok-Jae Moon, Jong-Youg Lee "A Study on Korean Sentiment Analysis Rate Using Neural Network and Ensemble Combination", International Journal of Advanced Culture Technology, Vol.9 No.4 , pp.268, 2021. https://doi.org/10.17703/IJACT.2021.9.4.268