Acknowledgement
The first author is grateful to CAPES/Brazil for the support. The second author is grateful for the financial support received from the Brazilian government in the form of a CNPq grant.
References
- Ahmadvand, H. and Habibi, A. (2020), "Optimum design of shape and size of truss structures via a new approximation method", Struct. Eng. Mech., 76(6), 799-821. https://doi.org/10.12989/sem.2020.76.6.799.
- NBR 8800 (2008), Projeto de estruturas de aco e de estruturas mistas de aco e concreto de edificios, Associacao Brasileira de Normas Tecnicas, Rio de Janeiro, Brazil.
- Bekdas, G. (2015), "Sizing optimization of truss structures using flower pollination algorithm", Appl. Soft Comput., 37, 322-331. https://doi.org/10.1016/j.asoc.2015.08.037.
- Bigham, A. and Gholizadeh, S. (2020), "Topology optimization of nonlinear single-layer domes by an improved electro-search algorithm and its performance analysis using statistical tests", Struct. Multidiscipl. Optimiz., 62(4), 1821-1848. https://doi.org/10.1007/s00158-020-02578-4.
- Camp, C. (2007) "Design of space trusses using Big Bang-Big Crunch optimization", J. Struct. Eng., 133(7), 999-1008. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(999).
- Cheng, M. (2016), "A hybrid harmony search algorithm for discrete sizing optimization of truss structure", Automation Construct., 69, 21-33. https://doi.org/10.1016/j.autcon.2016.05.023.
- Das, S. and Dhang, N. (2020), "Structural damage identification of truss structures using self-controlled multi-stage particle swarm optimization", Smart Struct. Syst., 25(3), 345-368. https://doi.org/10.12989/sss.2020.25.3.345.
- Dede, T., Kankal M., Vosoughi A.R., Grzywinski M. and Kripka M. (2016), "Artificial intelligence applications in civil engineering", Hindawi, 2019, https://doi.org/10.1155/2019/8384523.
- Fakury, R.H., Silva, A.L.R.C. and Caldas, R.B. (2016), Dimensionamento de Elementos Estruturais de Aco e Concreto. Pearson University.
- Gholizadeh, S., Davoudi, H. and Fattahi, F. (2017), "Design of steel frames by an enhanced moth-flame optimization algorithm", Steel Compos. Struct., 24(1), 129-140. https://doi.org/10.12989/scs.2017.24.1.129.
- Gholizadeh, S., Razavi, N. and Shojaei, E. (2019), "Improved black hole and multiverse algorithms for discrete sizing optimization of planar structures", Eng. Optimiz., 51(10), 1645-1667. https://doi.org/10.1080/0305215X.2018.1540697.
- Gholizadeh, S., Danesh, M. and Gheyratmand, C. (2020), "A new Newton metaheuristic algorithm for discrete performance-based design optimization of steel moment frames", Comput. Struct., 234, 106250. https://doi.org/10.1016/j.compstruc.2020.106250.
- Gomes, H. (2011), "Truss optimization with dynamic constraints using a particle swarm algorithm", Expert Syst. Appl., 38(1), 957-968. https://doi.org/10.1016/j.eswa.2010.07.086.
- Grzywinski, M., Dede, T. and O zdemir, Y.I. (2019), "Optimization of the braced dome structures by using Jaya algorithm with frequency constraints", Steel Compos. Struct., 30(1), 47-55. https://doi.org/10.12989/scs.2019.30.1.047.
- Ho-huu, V. (2015), "An improved constrained differential evolution using discrete variables (D-ICDE) for layout optimization of truss structures", Expert Syst. Appl., 42(20), 7057-7069. https://doi.org/10.1016/j.eswa.2015.04.072.
- Jain, M. (2019), "A novel nature-inspired algorithm for optimization: Squirrel search algorithm", Swarm Evolut. Comput., 44, 148-175. https://doi.org/10.1016/j.swevo.2018.02.013.
- Jia, G. (2013), "An improved (μ+ λ)-constrained differential evolution for constrained optimization", Information Sciences, 222, 302-322. https://doi.org/10.1016/j.ins.2012.01.017.
- Kaveh, A. and Talatahari, S. (2009) "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures", Comput. Struct., 87(5-6), 267-283. https://doi.org/10.1016/j.compstruc.2009.01.003.
- Kaveh, A. and Zolghadr, A. (2013) "Topology optimization of trusses considering static and dynamic constraints using the CSS", Appl. Soft Comput., 13(5), 2727-2734. https://doi.org/10.1016/j.asoc.2012.11.014.
- Khatibinia, M. and Yazdani, H. (2018) "Accelerated multigravitational search algorithm for size optimization of truss structures", Swarm Evolut. Comput., 38, 109-119. https://doi.org/10.1016/j.swevo.2017.07.001.
- Kirkpatrick, S. (1983), "Optimization by simulated annealing", Science, 220(4598), 671-680. https://10.1126/science.220.4598.671.
- Kripka, M. (2004), "Discrete optimization of trusses by simulated annealing", J. Brazil. Soc. Mech. Sci. Eng., 26(2), 170-173. https://doi.org/10.1590/S1678-58782004000200008.
- Lee, K. (2005), "The harmony search heuristic algorithm for discrete structural optimization", Eng. Optimiz, 37(7), 663-684. https://doi.org/10.1080/03052150500211895.
- Li, L. (2009), "A heuristic particle swarm optimization method for truss structures with discrete variables", Comput. Struct., 87(7-8), 435-443. https://doi.org/10.1016/j.compstruc.2009.01.004.
- Luh, G. and Lin, C. (2008) "Optimal design of truss structures using ant algorithm", Struct. Multidiscipl. Optimiz., 36(4), 365-379. https://doi.org/10.1007/s00158-007-0175-6.
- Mashayekhi, M. and Yousefi, R. (2021), "Topology and size optimization of truss structures using an improved crow search algorithm", Struct. Eng. Mech., 77(6), 779-795. https://doi.org/10.12989/sem.2021.77.6.779.
- Miguel, L.F.F. and Miguel, L.F.F. (2012), "Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms", Expert Syst. Appl., 39(10), 9458-9467. https://doi.org/10.1016/j.eswa.2012.02.113.
- Nguyen, V. and Lee, D. (2021), "Large-scaled truss topology optimization with filter and iterative parameter control algorithm of Tikhonov regularization", Steel Compos. Struct., 39(5), 511-528. https://doi.org/10.12989/scs.2021.39.5.511.
- Rajeev, S. and Krishnamoorthy, C. (1992), "Discrete optimization of structures using genetic algorithms", J. Struct. Eng., 118(5), 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233).
- Ringertz, U. (1988), "On methods for discrete structural optimization", Eng. Optimiz., 13(1), 47-64. https://doi.org/10.1080/03052158808940946.
- Sonmez, M. (2011), "Artificial Bee Colony algorithm for optimization of truss structures", Appl. Soft Comput., 11(2), 2406-2418. https://doi.org/10.1016/j.asoc.2010.09.003.
- Tejani, G. (2018), "Truss optimization with natural frequency bounds using improved symbiotic organisms search", Knowledge-Based Syst, 143, 162-178. https://doi.org/10.1016/j.knosys.2017.12.012.
- Topping, B. (1983), "Shape optimization of skeletal structures: a review", J. Struct. Eng., 109(8), 1933-1951. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:8(1933).
- Xiang, B. (2009), "Optimization of trusses using simulated annealing for discrete variables", 2009 International Conference on Image Analysis and Signal Processing. IEEE, 410-414. https://10.1109/IASP.2009.5054647.
- Yang, X. (2012), "Flower pollination algorithm for global optimization", International Conference on Unconventional Computing and Natural Computation. Springer, 240-249. https://doi.org/10.1007/978-3-642-32894-7.
- Yeh, I. (1999), "Hybrid genetic algorithms for optimization of truss structures", Comput. Aid. Civil Infrastruct. Eng., 14(3), 199-206. https://doi.org/10.1111/0885-9507.00141.