DOI QR코드

DOI QR Code

Bending and free vibration analysis of FG sandwich beams using higher-order zigzag theory

  • Gupta, Simmi (Department of Civil Engineering, National Institute of Technology) ;
  • Chalak, H.D. (Department of Civil Engineering, National Institute of Technology)
  • Received : 2021.05.19
  • Accepted : 2022.11.02
  • Published : 2022.11.25

Abstract

In present work, bending and free vibration studies are carried out on different kinds of sandwich FGM beams using recently proposed (Chakrabarty et al. 2011) C-0 finite element (FE) based higher-order zigzag theory (HOZT). The material gradation is assumed along the thickness direction of the beam. Power-law, exponential-law, and sigmoidal laws (Garg et al 2021c) are used during the present study. Virtual work principle is used for bending solutions and Hamilton's principle is applied for carrying out free vibration analysis as done by Chalak et al. 2014. Stress distribution across the thickness of the beam is also studied in detail. It is observed that the behavior of an unsymmetric beam is different from what is exhibited by a symmetric one. Several new results are also reported which will be useful in future studies.

Keywords

Acknowledgement

The first author is grateful for the grant 2K18/NITK/PHD/6180093 assured by the National Institute of Technology Kurukshetra and MHRD-GOI for financial support through Ph.D. scholarship grant.

References

  1. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
  2. Apetre, N.A., Sankar, B.V. and Ambur, D.R. (2008), "Analytical modeling of sandwich beams with functionally graded core", J. Sandw. Struct. Mater., 10(1), 53-74. https://doi.org/10.1177/1099636207081111.
  3. Arefi, M. and Zenkour, A.M. (2018), "Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams", Steel Compos Struct, 29(5), 579-590. https://doi.org/10.12989/scs.2018.29.5.579.
  4. Arefi, M., Mohammad-Rezaei Bidgoli, E. and Zenkour, A.M. (2019), "Free vibration analysis of a sandwich nano-plate including FG core and piezoelectric face-sheets by considering neutral surface", Mech. Adv. Mater. Struct., 26(9), 741-752. https://doi.org/10.1080/15376494.2018.1455939.
  5. Arefi, M., Kiani, M. and Zenkour, A.M. (2020), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation via MCST", J. Sandw. Struct. Mater., 22(1), 55-86. https://doi.org/10.1177/1099636217734279.
  6. Arya, H., Shimpi, R.P. and Naik N.K. (2000), "Layer-by-layer analysis of a simply supported thick flexible sandwich beam", AIAA J., 40(10), 10-13. https://doi.org/10.2514/2.1550.
  7. Belarbi, M.O., Khechai, B.A.A., Houari, M.S.A., Garg, A., Hirane, H. and Chalak, H.D. (2021a), "Finite element bending analysis of symmetric and non-symmetric functionally graded sandwich beams using a novel parabolic shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0(0), 1-13. https://doi.org/10.1177/14644207211005096.
  8. Belarbi, M.O., Zenkour, A.M., Tati, A., Salami, S.J., Khechai, A. and Houari, M.S.A. (2021b), "An efficient eight-node quadrilateral element for free vibration analysis of multilayer sandwich plates", Int. J. Numer. Meth. Eng., 122(9), 2360-2387 https://doi.org/10.1002/nme.6624.
  9. Belarbi, M.O., Houari, M.S.A., Daikh, A.A., Garg, A., Merzouki, T., Chalak, H.D. and Hirane, H. (2021c), "Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory", Compos. Struct., 264, 113712. https://doi.org/10.1016/j.compstruct.2021.1137-1149.
  10. Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19 (3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  11. Benoumrane, S., Lazreg, H., Hassaine, D.T. and Adda, B.E.A. (2015), "Analytical solution for bending analysis of functionally graded beam", Steel Compos. Struct., 19(4), 829-841. https://doi.org/10.12989/SCS.2015.19.4.829.
  12. Brischetto, S. (2009), "Classical and mixed advanced models for sandwich plates embedding functionally graded cores", J. Mech. Mater. Struct., 4(1), 13-33. https://doi.org/10.2140/jomms.2009.4.13.
  13. Callioglu, H., Demir, E., Yilmaz, Y. and Sayer, M. (2013), "Vibration analysis of functionally graded sandwich beam with variable cross-section", Math. Comput. Appl., 18(3), 351-360. https://doi.org/10.3390/mca18030351.
  14. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
  15. Chakrabarti, A., Chalak, H.D., Ashraf M. and Hamid, A. (2011), "A new FE model based on higher order zigzag theory for the analysis of laminated sandwich beam with soft core", Compos. Struct., 93(2), 271-279. https://doi.org/10.1016/j.compstruct.2010.08.031.
  16. Chalak, H.D., Chakrabarti, A., Sheikh, A.H. and Iqbal, M.A. (2014), "C0 FE model based on HOZT for the analysis of laminated soft core skew sandwich plates: Bending and vibration", Appl. Math. Model., 38(4), 1211-1223. https://doi.org/10.1016/j.apm.2013.08.005
  17. Amirani, C.A., Khalili, S.M.R. and Nemati, N. (2009), "Free vibration analysis of sandwich beam with FG core using the element free galerkin method", Compos. Struct., 90(3), 373-379. https://doi.org/10.1016/j.compstruct.2009.03.023.
  18. Daikh, A.A. and Zenkour, A.M. (2019), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Express, 6(11), 115707. https://doi.org/10.1088/2053-1591/ab48a9.
  19. Daikh, A.A., Guerroudj, M., El Adjrami, M. and Megueni, A. (2019b), "Thermal Buckling of Functionally Graded Sandwich Beams", Adv. Mater. Res., 1156, 43-59. https://doi.org/10.4028/www.scientific.net/amr.1156.43.
  20. Daikh, A.A., Bensaid, I. and Zenkour, A.M. (2020), "Temperature dependent thermomechanical bending response of functionally graded sandwich plates", Eng. Res. Express, 2(1), 015006. https://doi.org/10.1088/2631-8695/ab638c.
  21. Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020b), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/SCS.2020.36.6.643.
  22. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2022), "Analysis of axially temperaturedependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 38(3), 2533-2554. https://doi.org/10.1007/s00366-021-01413-8.
  23. Hoai, C.T., Tu, T.M., Duc, D.M. and Hung, T.Q. (2020), "Static flexural analysis of sandwich beam with Functionally Graded Face Sheets and Porous Core via point interpolation meshfree method based on polynomial basic function", Arch. Appl. Mech., 91(3), 933-947. https://doi.org/10.1007/s00419-020-01797-x.
  24. Daouadji, T.H., Henni, A.H., Tounsi, A. and Abbes, A.B.E. (2013), "Elasticity solution of a cantilever functionally graded beam", Appl. Compos. Mater., 20(1), 1-15. https://doi.org/10.1007/s10443-011-9243-6.
  25. Davalos, J.F., Kim, Y. and Barbero, E.J. (1994), "Analysis of laminated beams with a layer-wise constant shear theory", 28, 241-253. https://doi.org/10.1016/0263-8223(94)90012-4.
  26. Garg, A. and Chalak, H.D. (2019b), "Efficient 2D C 0 FE based HOZT for analysis of singly curved laminated composite shell structures under point load", J. Phys. Confer. Ser., 1240, 012014. https://doi.org/10.1088/1742-6596/1240/1/012014.
  27. Garg, A. and Chalak, H.D. (2020), "Free vibration analysis of laminated sandwich plates under thermal loading", IOP Confer. Ser. Mater. Sci. Eng., 872(1), 012055. https://doi.org/10.1088/1757-899X/872/1/012055.
  28. Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2021), "A review of the analysis of sandwich FGM structures", Compos. Struct., 258(1), 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
  29. Garg, A., Chalak, H.D. and Chakrabarti, A. (2020a), "Bending analysis of functionally graded sandwich plates using HOZT including transverse displacement effects", Mech. Based Des. Struct. Mach., 1-15. https://doi.org/10.1080/15397734.2020.1814157.
  30. Garg, A. and Chalak, H.D. (2019a), "A Review on analysis of laminated composite and sandwich structures under hygrothermal conditions", Thin-Wall. Struct., 142, 205-226. https://doi.org/10.1016/j.tws.2019.05.005.
  31. Garg, A. Chalak, H.D. and Chakrabarti, A. (2020b), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater., 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.
  32. Garg, A. and Chalak, H.D. (2020a), "Analysis of non-skew and skew laminated composite and sandwich plates under hygrothermo-mechanical conditions including transverse stress variations", J. Sandw. Struct. Mater., 109963622093278. https://doi.org/10.1177/1099636220932782.
  33. Garg, A. and Chalak, H.D. (2021a), "Novel higher-order zigzag theory for analysis of laminated sandwich beams", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 235(1), 176-194. https://doi.org/10.1177/1464420720957045.
  34. Garg, A., Chalak, H.D., Belarbi, M.O., Zenkour, A.M. and Sahoo, R. (2021), "Estimation of carbon nanotubes and their applications as reinforcing composite materials-an engineering review", Compos. Struct., 272, 114234. https://doi.org/10.1016/j.compstruct.2021.114234
  35. Garg, A., Chalak, H.D., Belarbi, M.O. and Zenkour, A.M. (2021), "Hygro-thermo-mechanical based bending analysis of symmetric and unsymmetric power-law, exponential and sigmoidal FG sandwich beams", Mech. Adv. Mater. Struct., 1-23. https://doi.org/10.1080/15376494.2021.1931993.
  36. Garg, A., Chalak, H.D., Belarbi, M.O. and Zenkour, A.M. (2022), "A parametric analysis of free vibration and bending behavior of sandwich beam containing an open-cell metal foam core", Arch. Civil Mech. Eng., 22(1), 1-15. https://doi.org/10.1007/s43452-021-00368-3.
  37. Hirane, H., Belarbi, M.O., Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates", Eng. Comput., 1-29. https://doi.org/10.1007/s00366-020-01250-1.
  38. Iurlaro, L., Ascione, A., Gherlone, M., Mattone, M. and Sciuva, M.D. (2015), "Free vibration analysis of sandwich beams using the refined zigzag theory: an experimental assessment", Meccanica, 50(10), 2525-2535. https://doi.org/10.1007/s11012-015-0166-4.
  39. Kahya, V. (2016), "Buckling analysis of laminated composite and sandwich beams by the finite element method", Compos. Part B: Eng., 91, 126-134, https://doi.org/10.1016/j.compositesb.2016.01.031.
  40. Kahya, V. and Turan. M. (2017), "Bending of laminated composite beams by a multi-layer finite element based on a higher-order theory", Acta Physica Polonica A, 132(3), 473-475, https://doi:10.12693/APhysPolA.132.473.
  41. Kahya, V. and Turan. M. (2018a), "Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element", Compos. Part B: Eng., 146, 198-212. https://doi.org/10.1016/j.compositesb.2018.04.011.
  42. Kahya, V. and Turan. M. (2018b), "Buckling analysis of laminated composite and sandwich beams by the finite element method", Steel Compos. Struct., 28(4), 415-426. https://doi.org/10.12989/scs.2018.28.4.415.
  43. Kapuria, S., Ahmed, A. and Dumir, P.C. (2004a), "Static and dynamic thermo-electro-mechanical analysis of angle-ply hybrid piezoelectric beams using an efficient coupled zigzag theory", Compos. Sci. Technol., 64(16), 2463-2475. https://doi.org/10.1016/j.compscitech.2004.05.012.
  44. Kapuria, S., Dumir, P.C. and Ahmed, A. (2003), "An efficient higher order zigzag theory for composite and sandwich beams subjected to thermal loading", Int. J. Solids Struct., 40(24), 6613-6631. https://doi.org/10.1016/j.ijsolstr.2003.08.014.
  45. Kapuria S., Dumir P.C. and Ahmed A. (2004c), "Efficient coupled zigzag theory for hybrid piezoelectric beams for thermoelectric load", AIAA J., 42(2), 383-394. https://doi.org/10.2514/1.1748.
  46. Kapuria, S., Dumir, P.C. and Jain, N.K. (2004), "Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams", Compos. Struct., 64(3-4), 317-327. https://doi.org/10.1016/j.compstruct.2003.08.013.
  47. Karamanli, A. (2018), "Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory", Compos. Struct., 189, 127-136, https://doi.org/10.1016/j.compstruct.2018.01.060.
  48. Karamanli, A. and Vo, T.P. (2021), "Bending, vibration, buckling analysis of bi-directional FG porous microbeams with a variable material length scale parameter", Appl. Math. Model., 91, 723-748, https://doi.org/10.1016/j.apm.2020.09.058.
  49. Lekhnitskii, S.G. (1935), "Strength calculation of composite beams", Vestnik Inzhen I Teknikov, 9, 137-148.
  50. Li, W., Ma, H. and Gao. W. (2019), "A higher-order shear deformable mixed beam element model for accurate analysis of functionally graded sandwich beams", Compos. Struct., 221, 110830. https://doi.org/10.1016/j.compstruct.2019.04.002.
  51. Liu, J., Hao, C., Ye, W. and Zang, Q. (2021b), "Application of a new semi-analytic method in bending behavior of functionally graded material sandwich beams", Mech. Based Des. Struct. Mach., 1-24. https://doi.org/10.1080/15397734.2021.1890615.
  52. Liu, J., He, B., Ye, W. and Yang, F. (2021a), "High performance model for buckling of functionally graded sandwich beams using a new semi-analytical method", Compos. Struct., 262, 113614. https://doi.org/10.1016/j.compstruct.2021.113614.
  53. Menaa, R., Tounsi, A., Mouaici, F., Mechab, I., Zidi, M. and Bedia, E.A.A. (2012), "Analytical solutions for static shear correction factor of functionally graded rectangular beams", Mech. Adv. Mater. Struct., 19(8), 641-652. https://doi.org/10.1080/15376494.2011.581409.
  54. Muller E., Drasar C., Schilz J. and Kaysser W.A. (2003), "Functionally graded materials for sensor and energy applications", Mater. Sci. Eng. A, 362, 17-39. https://doi.org/10.1016/S0921-5093(03)00581-1.
  55. Nguyen, D.K. and Tran. T.T. (2016a), "A corotational formulation for large displacement analysis of functionally graded sandwich beam and frame structures", Math. Prob. Eng., 1-12. https://doi.org/10.1155/2016/5698351.
  56. Nguyen, T.K. and Nguyen, B.A. (2015), "A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams", J. Sandw. Struct. Mater., 17(6), 613-631. https://doi.org/10.1177/1099636215589237.
  57. Nguyen, T.K., Vo, T.P., Nguyen, B.A. and Lee, J. (2016b), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. https://doi.org/10.1016/j.compstruct.2015.11.074.
  58. Nguyen, T.K., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B: Eng., 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011.
  59. Osofero, A.I., Vo, T.P., Nguyen, T.K. and Lee, J. (2016), "Analytical solution for vibration and buckling of functionally graded sandwich beams using various Quasi-3D theories", J. Sandw. Struct. Mater., 18(1), 3-29. https://doi.org/10.1177/1099636215582217.
  60. Pham, Q.H., Tran,T.T., Tran, V.K., Nguyen, P.C., Thoi, T.N. and Zenkour, A.M. (2021), "Bending and hygro-thermo-mechanical vibration analysisof a functionally graded porous sandwich nanoshell resting on elastic foundation", Mech. Adv. Mater. Struct.,1-21. https://doi.org/10.1080/15376494.2021.1968549.
  61. Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempele, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng.: A, 362, 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X.
  62. Aitharaju R.V. and Averill R.C. (1999), "C0 zig-zag finite element for analysis of laminated composite beams", J. Eng. Mech., 125(3), 323-330. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:3(323).
  63. Rabboh, S.A. (2013), "The effect of functionally graded materials into the sandwich beam dynamic performance", Mater. Sci. Appl., 4(11), 751. https://doi.org/10.4236/msa.2013.411095.
  64. Rahmani, O., Khalili, S.M.R., Malekzadeh, K. and Hadavinia, H. (2009), "Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core", Compos. Struct., 91(2), 229-235. https://doi.org/10.1016/j.compstruct.2009.05.007.
  65. Reddy, J.N. (1990), "On refined theories of composite laminates", Meccanica, 25(4), 230-238. https://doi.org/10.1007/BF01559685.
  66. Sayyad, A.S. and Avhad, P.V. (2019), "On static bending, elastic buckling and free vibration analysis of symmetric functionally graded sandwich beams", J. Solid Mech., 11(1), 166-180. https://doi.org/10.22034/JSM.2019.664227.
  67. Sayyad, A.S., Ghugal, Y.M. and Naik, N.S. (2015), "Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory", Curved Lay. Struct., 2(1), 279-289. https://doi.org/10.1515/cls-2015-0015.
  68. Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007.
  69. Sayyad, A.S. and Ghugal, Y.M. (2019a), "A sinusoidal beam theory for functionally graded sandwich curved beams", Compos. Struct., 226, 111246. https://doi.org/10.1016/j.compstruct.2019.111246.
  70. Sayyad, A.S. and Ghugal, Y.M. (2019b), "Modeling and analysis of functionally graded sandwich beams: a review", Mech. Adv. Mater. Struct., 26(21), 1776-1795. https://doi.org/10.1080/15376494.2018.1447178.
  71. Sayyad, A.S. and Ghugal, Y.M. (2020), "On the buckling analysis of functionally graded sandwich beams using a unified beam theory", J. Comput. Appl. Mech., 51(2), 443-453. https://doi.org/10.22059/JCAMECH.2020.310180.557.
  72. Sayyad, A.S. and Ghugal, Y.M. (2021), "A unified five-degree-offreedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates", J. Sandw. Struct. Mater., 23(2), 473-506. https://doi.org/10.1177/1099636219840980.
  73. Schulz, U., Peters, M., Bach, F.W. and Tegeder, G. (2003), "Graded coatings for thermal, wear and corrosion barriers", Mater. Sci. Eng. A., 362, 61-80. https://doi.org/10.1016/S0921-5093(03)00580-X.
  74. Sciuva, M.D. and Icardi, U. (2001), "Numerical assessment of the core deformability effect on the behavior of sandwich beams", Compos. Struct., 52(1), 41-53. https://doi.org/10.1016/s0263-8223(00)00199-9.
  75. Shimpi, R.P. and Ghugal, Y.M. (2001), "A new layerwise trigonometric shear deformation theory for two-layered crossply beams", 61, 1271-1283. https://doi.org/10.1016/S0266-3538(01)00024-0.
  76. Simsek, M. and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024.
  77. Tessler, A. Sciuva, M.D. and Gherlone, M. (2009), "A refined zigzag beam theory for composite and sandwich beams", J. Compos. Mater., 43(9), 1051-1081. https://doi.org/10.1177/0021998308097730.
  78. Trinh, L.C., Vo, T.P., Osofero, A.I. and Lee, J. (2016), "Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach", Compos. Struct., 156, 263-275. https://doi.org/10.1016/j.compstruct.2015.11.010.
  79. Turan, M. and Kahya. V. (2021), "Free vibration and buckling analysis of functionally graded sandwich beams by Navier's method", J. Faculty Eng. Architect. Gazi Univ., 36(2), 743-757. https://DOI 10.17341/gazimmfd.599928.
  80. Venkataraman, S. and Sankar, B.V. (2003), "Elasticity solution for stresses in a sandwich beam with functionally graded core", AIAA J., 41(12), 2501-2505. https://doi.org/10.2514/2.6853.
  81. Vo, T.P. Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "Static behaviour of functionally graded sandwich beams using a quasi-3D theory", Compos. Part B: Eng., 68, 59-74. https://doi.org/10.1016/j.compositesb.2014.08.030.
  82. Vo, T.P., Thai, HT., Nguyen, T.K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22e. https://doi.org/10.1016/j.engstruct.2014.01.029.
  83. Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks". Compos. Struct., 83(1), 48-60. https://doi.org/https://doi.org/10.1016/j.compstruct.2007.03.006.
  84. Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P. (2014), "Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method", Compos. Struct., 117(1), 32-39. https://doi.org/10.1016/j.compstruct.2014.06.016.
  85. Yarasca, J., Mantari, J. L. and Arciniega, R. A. (2016), "Hermitelagrangian finite element formulation to study functionally graded sandwich beams", Composite Structures, 140, 567-81. https://doi.org/10.1016/j.compstruct.2016.01.015.
  86. Yazdani, R., Mohammadimehr, M., Zenkour, A., M. (2019), "Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings", Steel Compos Struct, 33(1), 93-109. https://doi.org/10.12989/scs.2019.33.1.093.
  87. Yildirim, S. (2020), "Free vibration analysis of sandwich beams with functionally- graded-cores by complementary functions method", AIAA J., 109, https://doi.org/10.2514/1.J059587.
  88. Zenkour, A.M. (2005a), "A comprehensive analysis on functionally graded sandwich plates: part 1-deflection and stresses", Int J Solids Struct, 42(18-19), 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015.
  89. Zenkour, A.M. (2005b), "A comprehensive analysis on functionally graded sandwich plates: part 2-buckling and free vibration", Int. J. Solids Struct., 42(18-19), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.
  90. Zenkour, A.M. and Rabab, A.A. (2021a), "Hygro-thermo-electromechanical bending analysis of sandwich plates with FG core and piezoelectric faces", Mech. Adv. Mater. Struct., 28(3), 282-294. https://doi.org/10.1080/15376494.2018.1562134.
  91. Zenkour, A.M., El-Shahrany, H.D. (2021b), "Controlled Motion of Viscoelastic Fiber-Reinforced Magnetostrictive Sandwich Plates Resting on Visco-Pasternak Foundation", Mech. Adv. Mat. Struct., https://doi.org/10.1080/15376494.2020.1861395.
  92. Zenkour, A.M., El-Shahrany, H.D. (2021c), "Hygrothermal Vibration of a Laminated Sandwich Plate with Magnetostrictive Faces and a Homogeneous Core", Polymer Compos., 42(12), 6672-6687. https://doi.org/10.1002/pc.26331.
  93. Zghal, S., Ataoui, D. and Dammak, F. (2020), "Static bending analysis of beams made of functionally graded porous materials", Mech. Based Des. Struct. Mach., 50(3), 1012-1029. https://doi.org/10.1080/15397734.2020.1748053.