DOI QR코드

DOI QR Code

Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack

  • Yaylaci, Murat (Department of Civil Engineering, Recep Tayyip Erdogan University) ;
  • Yaylaci, Ecren Uzun (Surmene Faculty of Marine Science, Karadeniz Technical University) ;
  • Ozdemir, Mehmet Emin (Department of Civil Engineering, Cankiri Karatekin University) ;
  • Ay, Sevil (Department of Civil Engineering, Artvin Coruh University) ;
  • Ozturk, Sevval (Department of Civil Engineering, Recep Tayyip Erdogan University)
  • 투고 : 2022.03.31
  • 심사 : 2022.11.11
  • 발행 : 2022.11.25

초록

In this study, a two-dimensional model of the contact problem has been examined using the finite element method (FEM) based software ANSYS and based on the multilayer perceptron (MLP), an artificial neural network (ANN). For this purpose, a functionally graded (FG) half-infinite layer (HIL) with a crack pressed by means of two rigid blocks has been solved using FEM. Mass forces and friction are neglected in the solution. Since the problem is analyzed for the plane state, the thickness along the z-axis direction is taken as a unit. To check the accuracy of the contact problem model the results are compared with a study in the literature. In addition, ANSYS and MLP results are compared using Root Mean Square Error (RMSE) and coefficient of determination (R2), and good agreement is found. Numerical solutions are made by considering different values of external load, the width of blocks, crack depth, and material properties. The stresses on the contact surfaces between the blocks and the FG HIL are examined for these values, and the results are presented. Consequently, it is concluded that the considered non-dimensional quantities have a noteworthy influence on the contact stress distributions, and also, FEM and ANN can be efficient alternative methods to time-consuming analytical solutions if used correctly.

키워드

참고문헌

  1. Aizikovich, S.M., Mitrin, B.I., Seleznev, N.M., Wang, Y.C. and Volkov, S.S. (2016), "Influence of a soft FGM interlayer on contact stresses under a beam on an elastic foundation", Struct. Eng. Mech., 58(4), 613-625. https://doi.org/10.12989/SEM.2016.58.4.613.
  2. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, B.T. (2020), "Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones", Aerosp. Sci. Technol., 107, 106259. https://doi.org/10.1016/j.ast.2020.106259.
  3. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021a) "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", ThinWall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.
  4. Al-Furjan, M.S.H., Hajmohammad, M.H., Shen, X., Rajak, D.K. and Kolahchi, R. (2021b), "Evaluation of tensile strength and elastic modulus of 7075-T6 aluminum alloy by adding SiC reinforcing particles using vortex casting method", J. Alloys. Compd., 886, 161261. https://doi.org/10.1016/j.jallcom.2021.161261.
  5. ANSYS (2013), Swanson Analysis Systems Inc, USA.
  6. Arianfar, A., Ramezanzadeh, A. and Khalili, M. (2021), "Numerical study of nonlinear fluid flow behavior in natural fractures adjacent to porous medium", J. Pet. Sci. Eng., 204, 108710. https://doi.org/10.1016/j.petrol.2021.108710
  7. Atmane, H.A., Tounsi, A., Ziane, N. and Mechab, I. (2011), "Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section", Steel Compos. Struct., 11(6), 489-504. https://doi.org/10.12989/SCS.2011.11.6.489.
  8. Bourada, M., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struc., 18(2), 409-423. https://doi.org/10.12989/SCS.2015.18.2.409.
  9. Chaht, F.L., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struc., 18(2), 425-442. https://doi.org/10.12989/SCS.2015.18.2.425.
  10. Chen, L., Hu, D., Deng, H., Cui, Y. and Zhou, Y. (2016), "Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis", Steel Compos. Struc., 21(5), 1031-1043. https://doi.org/10.12989/SCS.2016.21.5.1031.
  11. DarAssi, M. and Hadji, L. (2014), "Analysis of the Interplay Between Sedimentation and Thermophoresis in the Presence of Convection in Colloidal Suspensions", Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. https://doi.org/10.1115/FEDSM2014-21078.
  12. Dawson, C.W. and Wilby, R. (2009), "An artificial neural network approach to rainfall-runoff modelling", Hydrol. Sci. J., 43(1), 47-66. https://doi.org/10.1080/02626669809492102.
  13. Dong, J., Ma, X., Zhuge, Y. and Mills, J.E. (2018), "Contact buckling behaviour of corrugated plates subjected to linearly varying in-plane loads", Steel Compos. Struct., 29(3), 333-348. https://doi.org/10.12989/SCS.2018.29.3.333.
  14. Drosopoulos, G.A., Stavroulakis, G.E. and Abdalla, K.M. (2012), "3D Finite element analysis of end - plate steel joints", Steel Compos. Struct., 12(2), 93-115. https://doi.org/10.12989/SCS.2012.12.2.093.
  15. Elsayed, M., Tayeh, B.A., Mohamed, M., Elymany, M. and Mansi, A.H. (2021), "Punching shear behaviour of RC flat slabs incorporating recycled coarse aggregates and crumb rubber", J. Build. Eng., 44, 103363. https://doi.org/10.1016/j.jobe.2021.103363
  16. Faramoushjan, S.G., Jalalifar, H. and Kolahchi, R. (2021), "Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes", Adv. Concr. Constr., 11(6), 521-529. https://doi.org/10.12989/acc.2021.11.6.521.
  17. Fath, A.H., Madanifar, F. and Abbasi, M. (2020), "Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems", Petroleum, 6, 80-91. https://doi.org/10.1016/j.petlm.2018.12.002.
  18. Fekrar, A., El Meiche, N., Bessaim, A., Tounsi, A. and Adda Bedia, E.A. (2012), "Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory", Steel Compos. Struc., 13(1), 91-107. https://doi.org/10.12989/SCS.2012.13.1.091.
  19. Fischer, M.M. and Gopal, S. (1994), "Artificial neural networks: a new approach to modeling interregional telecommunication flows", JRS., 34(4), 503-527.
  20. Flamant, A. (1892), "Sur la repartition des pressions dans un solide rectangulaire charge transversalement", Compt. Rendus, 114, 465-1468.
  21. Ghouilem, K., Mehaddene, R., Ghouilem, J., Kadri, M. and Boulifa, D. (2021), "ANSYS modeling interface and creep behavior of concrete matrix on waste glass powder under constant static stress", Materials Today: Proceedings.
  22. Guneyisi, E.M., D'niell, M., Landolfo, R. and Mermerdas, K. (2014), "Prediction of the flexural overstrength factor for steel beams using artificial neural network", Steel Compos. Struct., 17(3), 215-236. https://doi.org/10.12989/SCS.2014.17.3.215.
  23. Guvercin, Y., Abdioglu, A.A., Dizdar, A., Uzun Yaylaci, E. and Yaylaci, M. (2022a), "Suture button fixation method used in the treatment of syndesmosis injury: A biomechanical analysis of the effect of the placement of the button on the distal tibiofibular joint in the mid-stance phase with finite elements method", Injury, https://doi.org/10.1016/j.injury.2022.05.037.
  24. Guvercin, Y., Yaylaci, M., Dizdar, A., Kanat, A., Uzun Yaylaci, E., Ay, S., Abdioglu, A.A. and Sen, A. (2022b), "Biomechanical analysis of odontoid and transverse atlantal ligament in humans with ponticulus posticus variation under different loading conditions: finite element study", Injury, https://doi.org/10.1016/j.injury.2022.10.003.
  25. Guvercin, Y., Yaylaci, M., Olmez, H., Uzun Yaylaci, E., Ozdemir M.E. and Dizdar, A., (2022), "Finite element analysis of the mechanical behavior of the different angle hip femoral stem", BME, 6(1), 29-46. https://doi.org/10.12989/bme.2022.6.1.029.
  26. Hertz, H. (1882), "Uber die beruhrung fester elastischer korpe", J Reine Angew Math, 92, 156-171. https://doi.org/10.1515/crll.1882.92.156.
  27. Hadji, L. and DarAssi, M. (2014), "Influence of sedimentation on the threshold for Soret-driven convection in colloidal suspensions", Phys. Rev. E. Stat. Nonlin. Soft Matter. Phys., 89(1). https://10.1103/PhysRevE.89.013014.
  28. Hakim, S.J.S. and Razak, H.A. (2013), "Structural damage detection of steel bridge girder using artificial neural networks and finite element models", Steel Compos. Struct., 14(4), 367-377. https://doi.org/10.12989/SCS.2013.14.4.367.
  29. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.
  30. Keshtegar, B., Xiao, M., Kolahchi, R. and Trung, N.T. (2020), "Reliability analysis of stiffened aircraft panels using adjusting mean value method", AIAA J., 58(12), 5448-5458. https://doi.org/10.2514/1.J059636.
  31. Keshtegar, B., Nehdi, M.L., Trung, N-T. and Kolahchi, R. (2021), "Predicting load capacity of shear walls using SVR-RSM model", Appl. Soft Comput., 112, 107739. https://doi.org/10.1016/j.asoc.2021.107739.
  32. Kim, K.N., Lee, S.H. and Jung, K.S. (2009), "Prediction on the fatigue life of butt-welded specimens using artificial neural network", Steel Compos. Struc., 9(6), 557-568. https://doi.org/10.12989/SCS.2009.9.6.557.
  33. Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
  34. Kolahchi, R., Keshtegar, B. and Trung, N-T. (2021), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", J. Sandw. Struct. Mater., 24(1), 643-662. https://doi.org/10.1177/10996362211020388.
  35. Liu, Z., Yan, J. and Mi, C. (2018), "On the receding contact between a two-layer inhomogeneous laminate and a half-plane", Struct. Eng. Mech., 66(3), 329-341. https://doi.org/10.12989/SEM.2018.66.3.329.
  36. Malinova, T. and Guo, Z.X. (2004), "Artificial neural network modelling of hydrogen storage properties of Mg-based alloys", Mater. Sci. Eng. A., 365, 219-227. https://doi.org/10.1016/j.msea.2003.09.031.
  37. Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., 42(8), 4073-4081. https://doi.org/10.1002/pc.26118.
  38. Muskhelishvili, N.I. (1933), "Some basic problems of the mathematical Theory of Elasticity", Moscow-Leningrad: Izdat AN SSSR.
  39. Nisanci, G.N., Guvercin, Y., Ates, S.M., Olmez, H., Uzun Yaylaci, E. and Yaylaci, M. (2020), "Investigation of the effect of different prosthesis designs and numbers on stress, strain and deformation distribution", Int. J. Appl. Sci., 12(4), 138-152. https://doi.org/10.24107/ijeas.816227.
  40. Nguyen, M.S., Thai, D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/SCS.2020.35.3.415.
  41. Oner, E. (2021a), "Two-dimensional frictionless contact analysis of an orthotropic layer under gravity", J. Mech. Mater. Struct., 16(4), 573-594. https://doi.org/10.2140/jomms.2021.16.573.
  42. Oner, E. (2021b), "Frictionless contact mechanics of an orthotropic coating/isotropic substrate system", Comput. Concr., 28(2), 209-220. https://doi.org/10.12989/cac.2021.28.2.209.
  43. Oner, E. (2021c), "Computational contact mechanics for a medium consisting of functionally graded material coating and orthotropic substrate", JSEAM, 4(4), 249-266. https://doi.org/10.31462/jseam.2021.04249266.
  44. Oner, E., Sengul Sabano, B., Uzun Yaylaci, E., Adiyaman, G., Yaylaci, M. and Birinci, A. (2022), "On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods", ZAMM., https://doi.org/10.1002/zamm.202100287.
  45. Sadowsky, M.A. (1928), "Zweidumentionale probleme der elastizitatstheorie", ZAMM., 8(2), 107-121. https://doi.org/10.1002/zamm.19280080203.
  46. Sarfarazi, V. and Haeri, H. (2016), "A review of experimental and numerical investigations about crack propagation", Comput. Concr., 18(2), 235-266. https://doi.org/10.12989/cac.2016.18.2.235.
  47. Sarfarazi, V. and Haeri, H. (2018), "Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)", Struct. Eng. Mech., 68(5), 537-547. https://doi.org/10.12989/sem.2018.68.5.537.
  48. Terzi, M., Guvercin, Y., Ates, S.M., Sekban, D.M. and Yaylaci, M. (2020), "Effect of different abutment mateiials on stress distribution in peripheral bone and dental implant system", Sigma J. Eng. Nat. Sci., 38(3), 1515-1527.
  49. Uzun Yaylaci, E., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concr., 25(6), 551-563. https://doi.org/10.12989/CAC.2020.25.6.551.
  50. Ustun, A. (2019), Contact-Crack Problem of Homogeneous Infinite Layer Loaded with Anti Symmetric Two Rigid Blocks, Ph.D. Dissertation, Karadeniz Technical University, Trabzon.
  51. Wriggers, P. (2006), Computational Contact Mechanics, Heidelberg: Springer Verlag.
  52. Yan, H., Jiang, Y., Zheng, J., Peng, C. and Li, Q. (2006), "A multilayer perceptron based medical decision support system for heart disease diagnosis", Exp. Syst. Appl., 30(2), 272-281. https://doi.org/10.1016/j.eswa.2005.07.022.
  53. Yan, J., Mi, C. and Liu, Z. (2017), "A semianalytical and finiteelement solution to the unbonded contact between a frictionless layer and an FGM-coated half-plane", Math Mech Solids., 24(2) 448-464. https://doi.org/10.1177/1081286517744600.
  54. Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336.
  55. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci A. (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums" Mech. Mater., https://doi.org/10.1016/j.mechmat.2020.103730.
  56. Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2021b), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concr., 27, 199-210.
  57. Yaylaci, M., Yayli, M., Uzun Yaylaci, E., Olmez, H. and Birinci, A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78, 585-597.
  58. Yaylaci, M., Abanoz, M., Uzun Yaylaci, E., Olmez, H., Sekban, M.D.and Birinci, A. (2022a), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
  59. Yaylaci, M., Sengul Sabano, B., Ozdemir, M.E. and Birinci, A. (2022b), "Solving the contact problem of functionally graded layers resting on a homogeneous half-plane and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401.
  60. Yaylaci, M., Abanoz, M., Uzun Yaylaci, E., Olmez, H., Sekban, M.D. and Birinci, A. (2022), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Arch. Appl. Mech., https://doi.org/10.1007/s00419-022-02159-5.
  61. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech, 57(6), 1143-1156. https://doi.org 10.12989/sem.2016.57.6.1143.
  62. Yaylaci, M. (2022), "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Adv. Nano Res., 12(4), 405-414. https://doi.org/10.12989/anr.2022.12.4.405.