DOI QR코드

DOI QR Code

Quality Control of Dissolved Nutrient Data in the Jurisdictional Ocean Information Sharing System (JOISS)

관할해역 해양정보 공동활용 시스템(JOISS) 용존영양염 자료의 품질관리

  • RHO, TAEKEUN (Instrumental Development and Management Center, Korea Institute of Ocean Science and Technology) ;
  • CHOI, SANG-HWA (Instrumental Development and Management Center, Korea Institute of Ocean Science and Technology) ;
  • LEE, JI YOON (HAEBOM DATA Inc.) ;
  • KWON, SOYEON (Marine Environmental Research Center, Korea Institute of Ocean Science and Technology) ;
  • KANG, DONG-JIN (Marine Environmental Research Center, Korea Institute of Ocean Science and Technology) ;
  • SONG, TAE YOON (HAEBOM DATA Inc.) ;
  • SON, PURENA (Instrumental Development and Management Center, Korea Institute of Ocean Science and Technology)
  • 노태근 (한국해양과학기술원 해양기기개발.운영센터) ;
  • 최상화 (한국해양과학기술원 해양기기개발.운영센터) ;
  • 이지윤 (해봄데이터) ;
  • 권소연 (한국해양과학기술원 해양환경연구센터) ;
  • 강동진 (한국해양과학기술원 해양환경연구센터) ;
  • 송태윤 (해봄데이터) ;
  • 손푸르나 (한국해양과학기술원 해양기기개발.운영센터)
  • Received : 2022.10.12
  • Accepted : 2022.11.21
  • Published : 2022.11.30

Abstract

Dissolved nutrients in seawater are a key variable for understanding the role of the ocean in controlling atmospheric carbon dioxide, which is a major cause of global warming. In order to continuously monitor changes in the marine environment in the waters around the Korean Peninsula, dissolved nutrient data are being measured through regular observations by national institutions and various research projects. To increase the utilization of these data, the Jurisdictional Ocean Information Sharing System (JOISS), which integrates data from each institution, was established. In this study, for the dissolved nutrient data of JOISS, primary quality control was performed using the regional dissolved nutrient concentration range in the waters around the Korean Peninsula, and the correlation between the dissolved nutrient and other oceanographic characteristics or the correlation within dissolved nutrient components. Providing the quality control flags of regional range and primary quality control may increase the reliability of JOISS dissolved nutrient data and promote the utilization of dissolved nutrient data in JOISS. In addition, we proposed a secondary quality control method essential for improving the international comparability of JOISS dissolved nutrients.

해수 중 용존영양염은 지구온난화의 주요 원인인 대기 중 이산화탄소 조절에 관여하는 해양의 역할을 이해하기 위한 핵심변수이다. 우리나라에서는 한반도 주변 해역의 해양환경 변화를 지속적으로 감시하기 위해 국가기관의 정기적인 관측과 다양한 연구과제수행을 통해 용존영양염 자료가 수집되고 있다. 이들 자료의 활용도를 높이기 위해 각 기관들의 자료를 통합하는 관할 해역 해양정보 공동활용시스템(Jurisdictional Ocean Information Sharing System, JOISS)이 구축되었다. 본 연구에서는 JOISS 용존영양염 자료에 대해 한반도 주변해역의 용존영양염 지역 농도 범위와 용존영양염과 다른 해양학적인 특성 및 용존영양염 성분들간의 상호관계를 이용한 일차 품질관리를 수행 하였다. 지역 농도 범위와 일차품질관리를 통합한 품질관리 표식을 제공함으로써 자료의 신뢰도를 향상하여 JOISS 용존영양염 자료의 활용도 증가에 기여하고자 하였다. 또한 JOISS 용존영양염 자료의 국제적인 상호비교성 향상에 필수적인 이차품질관리 방법을 제안하였다.

Keywords

Acknowledgement

이 논문은 2022년도 해양수산부 재원으로 해양수산과학기술진흥원-관할해역 해양정보 공동활용 체계구축(2단계)사업(20160401, PM62400)의 지원를 받아 수행된 연구입니다. 좋은 제안을 해주신 두 분의 심사위원들께 감사드립니다.

References

  1. Becker, S., M. Aoyama, E.M.S. Woodward, K. Bakker, S. Coverly, C. Mahaffey and T. Tanhua, 2020. GO-SHIP Repeat Hydrography Nutrient Manual: The Precise and Accurate Determination of Dissolved Inorganic Nutrients in Seawater, Using Continuous Flow Analysis Methods. Frontiers Mar Sci., 7: 581790. DOI: https://doi.org/10.3389/fmars.2020.581790.
  2. Cai, W., M. Dai and Y. Wang, 2006. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophys Res Lett., 33(12). DOI: https://doi.org/10.1029/2006gl026219.
  3. Gong, G.-C., Y.L.L. Chen and K.-K. Liu, 1996. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Continental Shelf Research, 16(12): 1561-1590. DOI: https://doi.org/10.1016/0278-4343(96)00005-2.
  4. IOC UNESCO (Intergovernmental Oceanographic Commission of UNESCO), 2013. Ocean Data Standards, Vol. 3: Recommendation for Quality Flag Scheme for the Exchange of Oceanographic and Marine Meteorological Data. IOC Manuals and Guides, 54(3), Paris, 12 pp, (IOC/2013/MG/54-3).
  5. Jang, P.-G., H. Shin, S. Baek, M. Jang, T. Lee and K. Shin, 2013. Nutrient distribution and effects on phytoplankton assemblages in the western Korea/Tsushima Strait. New Zealand Journal of Marine and Freshwater Research, 47(1):21-37. DOI: https://doi.org/10.1080/00288330.2012.718284.
  6. Jiang, L.-Q., D. Pierrot, R. Wanninkhof, R.A. Feely, B. Tilbrook, S. Alin, L. Barbero, R.H. Byrne, B.R. Carter, A.G. Dickson, J.-P. Gattuso, D. Greeley, M. Hoppema, M.P. Humphreys, J. Karstensen, N. Lange, S.K. Lauvset, E.R. Lewis, A. Olsen, F.F. Perez, C. Sabine, J.D. Sharp, T. Tanhua, T.W. Trull, A. Velo, A.J. Allegra, P. Barker, E. Burger, W.-J. Cai, C.-T.A. Chen, J. Cross, H. Garcia, J.M. Hernandez-Ayon, X. Hu, A. Kozyr, A.C. Langdon, K. Lee, J. Salisbury, Z.A. Wang and L. Xue, 2022. Best Practice Data Standards for Discrete Chemical Oceanographic Observations. Frontiers Mar Sci., 8: 705638. DOI: https://doi.org/10.3389/fmars.2021.705638.
  7. Kido, K. and M. Nishimura, 1973. Regeneration of silicate in the ocean. J Oceanogr Soc Jpn., 29: 185-192. DOI:https://doi.org/10.1007/bf02108525.
  8. Kim, C.-H. and K. Kim, 1983. Origin and Characteristic of cold waters occurring in coastal regions of the East Sea. J. Korean Soc. Oceanogr., 18(1): 73-83.
  9. Kim, I.-N. and T. Lee, 2004. Physicochemical Properties and the Origin of Summer Bottom Cold Waters in the Korea Strait. Ocean and Polar Research, 26(4): 595-606. https://doi.org/10.4217/OPR.2004.26.4.595
  10. Kim, K., K.-R. Kim, Y.-G. Kim, Y.-K. Cho, D.-J. Kang, M. Takematsu and Y. Volkov, 2004. Water masses and decadal variability in the East Sea (Sea of Japan). Progress in Oceanography, 61(2-4): 157-174. DOI: https://doi.org/10.1016/j.pocean.2004.06.003.
  11. Klausmeier, C.A., E. Litchman, T. Daufresne and S.A. Levin, 2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature, 429: 171-174. DOI: https://doi.org/10.1038/nature02454.
  12. KMA (Korea Meteorological Administration), 2020. Korean Climate Change Assessment Report 2020.
  13. Olsen, A., N. Lange, R.M. Key, T. Tanhua, H.C. Bittig, A. Kozyr, M. Alvarez, K. Azetsu-Scott, S. Becker, P.J. Brown, B.R. Carter, L.C. da Cunha, R.A. Feely, S. van Heuven, M. Hoppema, M. Ishii, E. Jeansson, S. Jutterstrom, C.S. Landa, S.K. Lauvset, P. Michaelis, A. Murata, F.F. Perez, B. Pfeil, C. Schirnick, R. Steinfeldt, T. Suzuki, B. Tilbrook, A. Velo, R. Wanninkhof and R.J. Woosley, 2020. An updated version of the global interior ocean biogeochemical data product, GLODAPv2. 2020. Earth Syst Sci Data, 12(4): 3653-3678. DOI: https://doi.org/10.5194/essd-12-3653-2020.
  14. Rho, T.K., 2021. Efforts on Improving Comparability of Ocean Chemical Data. J. Korean Soc. Oceanogr, 26(3): 201-219. DOI: https://doi.org/https://doi.org/10.7850/jkso.2021.26.3.201.
  15. Schlitzer, R., 2020. Oceanographic quality flag schemes and mappings between them v.1.4 Available at: https://odv.awi.de/fileadmin/user_upload/odv/misc/ODV4_QualityFlagSets.pdf.
  16. Tanhua, T., S. van Heuven, R.M. Key, A. Velo, A. Olsen and C. Schirnick, 2010. Quality control procedures and methods of the CARINA database. Earth System Science Data, 2(1): 35-49. DOI: https://doi.org/10.5194/essd-2-35-2010.