DOI QR코드

DOI QR Code

Synthesis and spectroscopic characterization of zinc ferrite nanoparticles

  • Arora, Shefali (Department of Chemistry, School of Engineering, University of Petroleum & Energy Studies (UPES)) ;
  • Nandy, Subhajit (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Latwal, Mamta (Department of Chemistry, School of Engineering, University of Petroleum & Energy Studies (UPES)) ;
  • Pandey, Ganesh (School of Agriculture, Dev Bhoomi Uttarakhand University) ;
  • Singh, Jitendra P. (Department of Physics, Manav Rachna University) ;
  • Chae, Keun H. (Advanced Analysis Center, Korea Institute of Science and Technology)
  • 투고 : 2021.08.27
  • 심사 : 2022.08.08
  • 발행 : 2022.11.25

초록

Synthesis approaches usually affect the physical and chemical properties of ferrites. This helps ferrite materials to design them for desired applications. Some of these methods are mechanical milling, ultrasonic method, micro-emulsion, co-precipitation, thermal decomposition, hydrothermal, microwave-assisted, sol-gel, etc. These methods are extensively reviewed by taking example of ZnFe2O4. These methods also affect the microstructure and local structure of ferrite which ultimately affect the physical and chemical properties of ferrites. Various spectroscopic techniques such as Raman spectroscopy, Fourier Transform Infrared spectroscopy, Ultra Violet-Visible spectroscopy, Mossbauer spectroscopy, extended x-ray absorption fine structure, and electron paramagnetic resonance are found helpful to reveal this information. Hence, the basic principle and the usefulness of these techniques to find out appropriate information in ZnFe2O4 nanoparticles is elaborated in this review.

키워드

과제정보

KHC acknowledges the financial support received through the Korea Institute of Science and Technology (KIST 2V09190). JPS acknowledges Science and Engineering Research Board (SERB), New Delhi for providing Ramanujan Fellowship. JPS is thankful to Hon'ble Vice Chancellor, Manav Rachna University, Faridabad for extending UV and FTIR spectroscopic facilities at University Instrumentation Centre (UIC).

참고문헌

  1. Abbasian, A., Hosseini, S., Shayesteh, M., Shafiee, M. and Esmaeilzaei M.R. (2020), "Ultrasonic-assisted solvothermal synthesis of self-assembled copper ferrite nanoparticles", Int. J. Nano Dimension, 11(2), 130-144.
  2. Ahmed, M.A., Ateia, E. and El-Dek, S.I. (2002), "Spectroscopic analysis of ferrite doped with different rare earth elements", Vib. Spectrosc., 30(1), 69-75. https://doi.org/10.1016/S0924-2031(02)00040-1.
  3. Ahn, Y., Choi, E.J., Kim, S., An, D.H., Kang, K.U., Lee, B.G., Baek, K.S. and Oak, H.N. (2002), "Magnetization and Mossbauer study of nanosize ZnFe2O4 particles synthesized by using a microemulsion method", J. Korean Phys. Soc., 41(1), 123-128.
  4. Akhtar, M.J., Nadeem, M., Javaid, S. and Atif, M. (2009), "Cation distribution in nanocrystalline ZnFe2O4 investigated using x-ray absorption fine structure spectroscopy", J. Phys. Condens. Matter, 21(40), 405303. https://doi.org/10.1088/0953-8984/21/40/405303.
  5. Allaedini, G., Tasirin, S. M. and Aminayi, P. (2015), "Magnetic properties of cobalt ferrite synthesized by hydrothermal method", Int. Nano Lett., 5(4), 183-186. https://doi.org/10.1007/s40089-015-0153-8.
  6. Ammar, S., Helfen, A., Jouini, N., Fievet, F., Rosenman, I., Villain, F., Molinie, P. and Danot, M. (2001), "Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium", J. Mater. Chem., 11(1), 186-192. https://doi.org/10.1039/B003193N.
  7. Andhare, D.D., Jadhav, S.A., Khedkar, M.V., Somvanshi, S.B., More, S.D. and Jadhav, K.M. (2020), "Structural and chemical properties of ZnFe2O4 nanoparticles synthesised by chemical co-precipitation technique", J. Phys. Conference Series, 1644, 012014. https://doi.org/10.1088/1742-6596/1644/1/012014.
  8. Andrianainarivelo, M., Corriu, R., Leclercq, D., Mutin, P. H. and Vioux, A. (1996), "Mixed oxides SiO2-ZrO2 and SiO2-TiO2 by a non-hydrolytic sol-gel route", J. Mater. Chem., 6(10), 1665-1671. https://doi.org/10.1039/JM9960601665.
  9. Anupriya, J., Babulal, S.M., Chen, T.W., Chen, S.M., Kumar, J.V., Lee, J.W., Rwei, S.P., Yu, J., Yu, R. and Hong, C.Y. (2021), "Facile hydrothermal synthesis of cubic zinc ferrite nanoparticles for electrochemical detection of antiinflammatory drug nimesulide in biological and pharmaceutical sample", Int. J. Electrochem. Sci., 16, 1-19. https://doi.org/10.20964/2021.07.72.
  10. Aquilanti, G., Vaccari, L., Plaisier, J.R. and Goldoni, A. (2015), Instrumentation at Synchrotron Radiation Beamlines, In Synchrotron Radiation: Basics, Methods and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg.
  11. Asab, G., Zereffa, E. A. and Seghne, T. A. (2020), "Synthesis of silica-coated Fe3O4 nanoparticles by microemulsion method: characterization and evaluation of antimicrobial activity", Int. J. Biomater., 2020, 1-11. https://doi.org/10.1155/2020/4783612
  12. Bao, N., Shen, L., Wang, Y., Padhan, P. and Gupta, A. (2007), "A facile thermolysis route to monodisperse ferrite nanocrystals", J. Am. Chem. Soc., 129(41), 12374-12375. https://doi.org/10.1021/ja074458d.
  13. Bhide, V.G. (1973), Mossbauer Effect and Its Applications, Tata McGraw-Hill Pub. Co., New Delhi, India.
  14. Basu, S., Nayak, C., Yadav, A.K., Agrawal, A., Poswal, A.K. Bhattacharyya, D., Jha, S.N. and Sahoo, N.K. (2014), "A comprehensive facility for EXAFS measurements at the INDUS-2 synchrotron source at RRCAT, Indore, India", J. Phys., 493, 012032.
  15. Bilecka, I., Kubli, Amstad, M. E. and Niederberger, M. (2011), "Simultaneous formation of ferrite nanocrystals and deposition of thin films via a microwave-assisted nonaqueous sol-gel process", J. Sol-Gel Sci. Technol., 57, 313-322. https://doi.org/10.1007/s10971-010-2165-1.
  16. Busca, G., Lorentzelle, V., Ramis, G. and Willey, R.J. (1993), Langmuir, 9, 1402.
  17. Calvin, S., Carpenter, E.E. , Ravel, B., Harris, V.G. and Morrison, S.A. (2002), "Multiedge refinement of extended x-rayabsorption fine structure of manganese zinc ferrite nanoparticles", Phys. Rev. B, 66(22), 224405. https://doi.org/10.1103/PhysRevB.66.224405.
  18. Carta, D., Casula, M.F., Mountjoy, G. and Corrias, A. (2008a), "Formation and cation distribution in supported manganese ferrite nanoparticles: An x-ray absorption study", Phys. Chem. Chem. Phys., 10(21), 3108-3117. https://doi.org/10.1039/B800359A.
  19. Carta, D., Loche, D., Mountjoy, G., Navarra, G. and Corrias, A. (2008b), "NiFe2O4 nanoparticles dispersed in an aerogel silica matrix: an x-ray absorption study", J. Phys. Chem. C, 112(40), 15623-15630. https://doi.org/10.1021/jp803982k.
  20. Chen, D. and Zhang, Y.Z. (2012), "Synthesis of NiFe2O4 nanoparticles by a low temperature microwave-assisted ball milling technique", Sci. China Technol. Sci., 55(6), 1535-1538. https://doi.org/10.1007/S11431-012-4772-2.
  21. Chen, L., Dai, H., Shen, Y. and Bai, J. (2010), "Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route", J. Alloys Compd., 491(1), L33-L38. https://doi.org/10.1016/j.jallcom.2009.11.031.
  22. Chinnasamy, C.N., Yang, A., Yoon, S.D., Hsu, K., Shultz, M.D., Carpenter, E.E., Mukerjee, S., Vittoria, C. and Harris, V.G. (2007), "Size dependent magnetic properties and cation inversion in chemically synthesized MnFe2O4 nanoparticles", J. Appl. Phys., 101(9), 09M509. https://doi.org/10.1063/1.2710218.
  23. Chipaux, R. (1990), "MOSPLV, a program for simulation of complex Mossbauer spectra in polycrystalline samples", Comput. Phys. Commun., 60(3), 405-415. https://doi.org/10.1016/0010-4655(90)90037-2.
  24. Cohen, R.L. (1976), Elements of Mossbauer Spectroscopy, In Applications of Mossbauer spectroscopy, Academic Press: New York, U.S.A.
  25. Darwish, M.S., Kim, H., Lee, H., Ryu, C., Lee, J.Y. and Yoon, J. (2019), "Synthesis of magnetic ferrite nanoparticles with high hyperthermia performance via a controlled co-precipitation method", Nanomaterials, 9(8), 1176. https://doi.org/10.3390/nano9081176.
  26. El Moussaoui, H., Mahfoud, T., Habouti, S., El Maalam, K., Ali, B.M., Hamedoun, M., Mounkachi, O., Masrour, R., Hlil, E.K. and Benyoussef, A. (2016), "Synthesis and magnetic properties of tin spinel ferrites doped manganese", J. Magn. Magn. Mater., 405, 181-186. https://doi.org/10.1016/j.jmmm.2015.12.059.
  27. Fox, M. and Bertsch, G.F. (2002), "Optical properties of solids", Am. Assoc. Phys. Teachers, 70, 1269.
  28. Fraas, L.M. and Moore, J.E. (1972), "Raman selection rule violation for a spinel crystal", Rev. Bras. Educ. Fis., 2(3), 299.
  29. Gan, Y.X., Jayatissa, A.H., Yu, Z., Chen, X. and Li, M. (2020), "Hydrothermal synthesis of nanomaterials", J. Nanomater., 2020, 8917013. https://doi.org/10.1155/2020/8917013.
  30. Gao, J., Gu, H. and Xu, B. (2009), "Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications", Accounts Chem. Res., 42(8), 1097-1107. https://doi.org/10.1021/ar9000026.
  31. Gatelyte, A., Jasaitis, D., Beganskiene, A. and Kareiva, A. (2011), "Sol-gel synthesis and characterization of selected transition metal nano-ferrites", Mater. Sci., 17(3), 302-307. https://doi.org/10.5755/j01.ms.17.3.598.
  32. Gilani, Z.A., Anjum, M.N., Shifa, S., Asghar, H.M.N.U.H.K., Rehman, J.U., Usmani, M.N., Aslam, S., Khan, M.A., Shahid, M. and Warsi, M.F. (2017), "Morphological and magnetic behavior of neodymium doped LiNi0.5Fe2O4 nanocrystalline ferrites prepared via micro-emulsion technique", Digest J. Nanomater. Biostruct., 12(1), 223-228. https://doi.org/10.1023/A:1010004616528.
  33. Girgis, E., Adel, D., Tharwat, C., Attallah, O. and Rao, K.V. (2015), "Cobalt ferrite nanotubes and porous nanorods for dye removal", Adv. Nano Res., 3(2), 111. http://doi.org/10.12989/anr.2015.3.2.111.
  34. Giridhar, M., Naik, H.S.B., Sudhamani, C.N., Prabakara, M.C., Kenchappa, R., Venugopal, N. and Patil, S. (2020), "Microwave-assisted synthesis of water-soluble styrylpyridine dye-capped zinc oxide nanoparticles for antibacterial applications", J. Chin. Chem. Soc., 67(2), 316-323. https://doi.org/10.1002/jccs.201900029.
  35. Godbole, R., Rao, P. and Bhagwat, S. (2017), "Magnesium ferrite nanoparticles: A rapid gas sensor for alcohol", Mater. Res. Express, 4(2), 025032. https://doi.org/10.1088/2053-1591/aa5ec7.
  36. Gokila, V., Perarasu, V. and Rufina, R.D.J. (2021), "Qualitative comparison of chemical and green synthesized Fe3O4 nanoparticles", Adv. Nano Res., 10(1), 71. http://doi.org/10.12989/anr.2021.10.1.071.
  37. Gomes, G.A., Costa, G.L.D. and da Silva Figueiredo, A.B.H. (2018), "Synthesis of ferrite nanoparticles Cu1-xAgxFe2O4 and evaluation of potential antibacterial activity", J. Mater. Res. Technol., 7(3), 381-386. https://doi.org/10.1016/j.jmrt.2018.04.021.
  38. Gomes, J.A., Azevedo, G.M., Depeyrot, J., Mestnik-Filho, J., da Silva, G.J., Tourinho, F.A. and Perzynski, R. (2011), "ZnFe2O4 nanoparticles for ferrofluids: a combined XANES and XRD study", J. Magn. Magn. Mater., 323(10), 1203-1206. https://doi.org/10.1016/j.jmmm.2010.11.006.
  39. Goswami, P.P., Choudhury, H.A., Chakma, S. and Moholkar, V.S. (2013a), "Sonochemical synthesis and characterization of manganese ferrite nanoparticles", Ind. Eng. Chem. Res., 52(50), 17848-17855. https://doi.org/10.1021/ie401919x.
  40. Goswami, P. P., Choudhury, H. A., Chakma, S. and Moholkar, V. S. (2013b), "Sonochemical synthesis of cobalt ferrite nanoparticles", Int. J. Chem. Eng., 2013, 1-6. https://doi.org/10.1155/2013/934234.
  41. Grandjean, F. and Long, G.J. (2021), "Best practices and protocols in Mossbauer spectroscopy", Chem. Mater., 33(11), 3878-3904. https://doi.org/10.1021/acs.chemmater.1c00326.
  42. Gul, S., Yousuf, M.A., Anwara, A., Warsi, M.F., Agboola, P.O., Shakir, I., Shahid, M. (2020), "Al-substituted zinc spinel ferrite nanoparticles: Preparation and evaluationof structural, electrical, magnetic and photocatalytic properties" Ceram. Int., 46(9), 14195-14205. https://doi.org/10.1016/j.ceramint.2020.02.228.
  43. Hammad, A., Hemdan, B. and Elnahrawy, A. (2020), "Facile synthesis and potential application of Ni0.6Zn0.4Fe2O4 and Ni0.6Zn0.2Ce0.2Fe2O4 magnetic nanocubes as a new strategy in sewage treatment", J. Environ. Manag., 270, 110816. https://doi.org/10.1016/j.jenvman.2020.110816.
  44. Hashhash, A., Bobrikov, I., Yehia, M., Kaiser, M. and Uyanga, E. (2020), "Neutron diffraction and Mossbauer spectroscopy studies for Ce doped CoFe2O4 nanoparticles", J. Magn. Magn. Mater., 503, 166624. https://doi.org/10.1016/j.jmmm.2020.166624.
  45. Hayek, S.S. (2019), "Synthesis and characterization of CeGdZnferrite nanoparticles as magnetic hyperthermia application agents", Adv. Mater. Sci. Eng., 4868506. https://doi.org/10.1155/2019/4868506.
  46. Hazra, S. and Ghosh, N. (2014), "Preparation of nanoferrites and their applications", J. Nanosci. Nanotechnol., 14, 1983-2000. https://doi.org/10.1166/jnn.2014.8745.
  47. Henderson, C.M.B., Charnock, J.M. and Plant, D.A. (2007), "Cation occupancies in Mg, Co, Ni, Zn, Al ferrite spinels: A multi-element EXAFS study", J. Phys. Condens. Matter, 19(7), 076214. https://doi.org/10.1088/0953-8984/19/7/076214
  48. Islam, K., Haque, M., Kumar, A., Hoq, A., Hyder, F. and Hoque, S. M. (2020), "Manganese ferrite nanoparticles (MnFe2O4): Size dependence for hyperthermia and negative/positive contrast enhancement in MRI", Nanomater., 10(11), 2297. https://doi.org/10.3390/nano10112297.
  49. Ito, A., Shinkai, M., Honda, H. and Kobayashi, T. (2005), "Medical application of functionalized magnetic nanoparticles", J. Biosci. Bioeng., 100(1), 1-11. https://doi.org/10.1263/jbb.100.1
  50. Jesudoss, S.K., Vijaya, J.J., Kennedy, L.J., Rajan, P.I., Al-Lohedan, H.A., Ramalingam, R.J., Kaviyarasu, K. and Bououdina, M. (2016), "Studies on the efficient dual performance of Mn1-xNixFe2O4 spinel nanoparticles in photodegradation and antibacterial activity", J. Photochem. Photobiol. B, 165, 121-132. https://doi.org/10.1016/j.jphotobiol.2016.10.004.
  51. Johnson, M., Gaffney, C., White, V., Bechelli, J., Balaraman, R. and Trad, T. (2020), "Non-hydrolytic synthesis of caprylate capped cobalt ferrite nanoparticles and their application against Erwinia carotovora and Stenotrophomonas maltophilia", J. Mater. Chem. B, 8(47), 10845-10853. https://doi.org/10.1039/D0TB02283G.
  52. Joshi, G.P., Saxena, N.S., Mangal, R., Mishra, A. and Sharma, T.P. (2003), "Band gap determination of Ni-Zn ferrites", Bull. Mater. Sci., 26(4), 387-389. https://doi.org/10.1007/BF02711181.
  53. Kadyrzhanov, K.K., Egizbek, K., Kozlovskiy, A.L. and Zdorovets, M.V. (2019), "Synthesis and properties of ferrite-based nanoparticles", Nanomaterials, 9(8), 1079. https://doi.org/10.3390/nano9081079.
  54. Kefeni, K.K., Msagati, T.A.M. and Mamba, B.B. (2017), "Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device", Mater. Sci. Eng. B, 215, 37-55. https://doi.org/10.1016/j.mseb.2016.11.002.
  55. Khalili, P. and Farahmandjou, M. (2020), "Nanofabrication of zinc ferrite (ZnFe2O4) composites for biomedical application", Challenges Nano Micro Scale Sci. Technol., 8(2), 89-98. https://doi.org/10.22111/tpnms.2020.35902.1199.
  56. Kharisov, B.I., Dias, H.V.R. and Kharissova, O.V. (2019), "Minireview: Ferrite nanoparticles in the catalysis", Arab. J. Chem., 12(7), 1234-1246. https://doi.org/10.1016/j.arabjc.2014.10.049.
  57. Kim, W. and Saito, F. (2001), "Mechanochemical synthesis of zinc ferrite from zinc oxide and α-Fe2O3", Powder Technol., 114(1-3), 12-16. https://doi.org/10.1016/S0032-5910(00)00256-4.
  58. Klencsar, Z., Kuzmann, E. and Vertes, A. (1996), "User-friendly software for Mossbauer spectrum analysis", J. Radioanal. Nuclear Chem., 210(1), 105-118. https://doi.org/10.1007/BF02055410.
  59. Kozakova, Z., Kuritka, I., Bazant, P., Machovsky, M., Pastorek, M., Babayan, V. and Ltd, T. (2012), "Simple and effective preparation of cobalt ferrite nanoparticles by microwaveassisted solvothermal method", Proceedings of the 4th International Conference, Brno, Czech republic.
  60. Kumar, H., Singh, J., Srivastava, R., Patel, K. and Chae, K.H. (2017), "Synthesis and characterization of DyxCoFe2-xO4 nanoparticles", Superlatt. Microstruct., 109, 296-306. https://doi.org/10.1016/j.spmi.2017.05.001.
  61. Kumar, H., Srivastava, R.C., Singh, J.P., Negi, P., Agrawal, H.M., Das, D. and Chae, K.H. (2016), "Structural and magnetic study of dysprosium substituted cobalt ferrite nanoparticles", J. Magn. Magn. Mater., 401, 16-21. https://doi.org/10.1016/j.jmmm.2015.09.077.
  62. Kumar, M., Dosanjh, H.S., Sonika, Singh, J., Monir, K. and Singh, H. (2020), "Review on magnetic nanoferrites and their composites as alternatives in waste water treatment: synthesis, modifications and applications", Environ. Sci. Water Res. Technol., 6(3), 491-514. https://doi.org/10.1039/C9EW00858F.
  63. Kurtinaitiene, M., Mazeika, K., Ramanavicius, S., Pakstas, V. and Jagminas, A. (2016), "Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles", Adv. Nano Res., 4(1), 1-14. https://doi.org/10.12989/anr.2016.4.1.001.
  64. Lai, J., Shafi, K.V.P.M., Ulman, A., Loos, K., Yang, N.L., Cui, M.H., Vogt, T., Estournes, C. and Locke, D.C. (2004), "Mixed iron-manganese oxide nanoparticles", J. Phys. Chem. B, 108(39), 14876-14883. https://doi.org/10.1021/jp049913w.
  65. Lazarevic, Z.Z., Jovalekic, C., Ivanovski, V.N., Recnik, A., Milutinovic, A., Cekic, B. and Romcevic, N.Z. (2014), "Characterization of partially inverse spinel ZnFe2O4 with high saturation magnetization synthesized via soft mechanochemically assisted route", J. Phys. Chem. Solids, 75(7), 869-877. https://doi.org/10.1016/j.jpcs.2014.03.004.
  66. Lee, I.J., Yu, C.J., Yun, Y.D., Lee, C.S., Seo, I.D., Kim, H.Y., Lee, W.W. and Chae, K.H. (2010), "Note: Construction of x-ray scattering and x-ray absorption fine structure beamline at the Pohang Light Source", Rev. Sci. Instrum., 81(2), 026103. https://doi.org/10.1063/1.3298581.
  67. Lee, P.Y., Chang, S.P. and Chang, S.J. (2013), "Synthesis and optical properties of ZnO thin films prepared by SILAR method with ethylene glycol", Adv. Nano Res., 1(2), 93-103. http://doi.org/10.12989/anr.2013.1.2.093.
  68. Li, H., Wu, H.Z. and Xiao, G.X. (2010), "Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4", Powder Technol., 198(1), 157-166. https://doi.org/10.1016/j.powtec.2009.11.005.
  69. Li, W., Lee, S.S., Wu, J., Hinton, C.H. and Fortner, J.D. (2016), "Shape and size controlled synthesis of uniform iron oxide nanocrystals through new non-hydrolytic routes", Nanotechnology, 27(32), 324002. https://doi.org/10.1088/0957-4484/27/32/324002.
  70. Li, Z., Gao, K., Han, G., Wang, R., Li, H., Zhao, X. and Guo, P. (2015), "Solvothermal synthesis of MnFe2O4 colloidal nanocrystal assemblies and their magnetic and electrocatalytic properties", New J. Chem., 39(1), 361-368. https://doi.org/10.1039/C4NJ01466A.
  71. Ma, J., Chen, B., Chen, B. and Zhang, S. (2017), "Preparation of superparamagnetic ZnFe2O4 submicrospheres via a solvothermal method", Adv. Nano Res., 5(2), 171-178. https://doi.org/10.12989/anr.2017.5.2.171.
  72. Manova, E., Kunev, B., Paneva, D., Mitov, I., Petrov, L., Estournes, C., D'Orlean, C., Rehspringer, J.L. and Kurmoo, M. (2004), "Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4", Chem. Mater., 16(26), 5689-5696. https://doi.org/10.1021/cm049189u.
  73. Marinca, T., Chicinas, I. and Isnard, O. (2012), "Synthesis, structural and magnetic characterization of nanocrystalline CuFe2O4 as obtained by a combined method reactive milling, heat treatment and ball milling", Ceram. Int., 38(3), 1951-1957. https://doi.org/10.1016/j.ceramint.2011.10.026.
  74. Marinca, T.F., Chicinas, I., Isnard, O., Pop, V. and Popa, F. (2011), "Synthesis, structural and magnetic characterization of nanocrystalline nickel ferrite-NiFe2O4 obtained by reactive milling", J. Alloys Compd., 509(30), 7931-7936. https://doi.org/10.1016/j.jallcom.2011.05.040.
  75. Matsnev, M.E. and Rusakov, V.S. (2012), "SpectrRelax: an application for Mossbauer spectra modeling and fitting", AIP Conference Proceedings, 1489(1), 178-185. https://doi.org/10.1063/1.4759488.
  76. Morales-Flores, N., Galeazzi, R., Rosendo, E., Diaz, T. and Pal, U. (2013), "Morphology control and optical properties of ZnO nanostructures grown by ultrasonic synthesis", Adv. Nano Res., 1(1), 59-70. http://doi.org/10.12989/anr.2013.1.1.059.
  77. Mozaffari, M. and Masoudi, H. (2014), "Zinc ferrite nanoparticles: New preparation method and magnetic properties", J. Superconduct. Novel Magn., 27(11), 2563-2567. https://doi.org/10.1007/s10948-014-2625-x.
  78. Mukhtar, M.W., Irfan, M., Ahmad, I., Ali, I., Akhtar, M.N., Khan, M.A., Abbas, G., Rana, M.U., Ali, A. and Ahmad M. (2015), "Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications", J. Magn. Magn. Mater., 381, 173-178. https://doi.org/10.1016/j.jmmm.2014.12.072.
  79. Munir, S., Rasheed, A., Zulfiqar, S., Aadil, M., Agboola, P.O., Shakir, I., Warsi, M.F. (2020)," Synthesis, characterization and photocatalytic parameters investigation of a new CuFe2O4/Bi2O3 nanocomposite", Ceram. Int., 46 (18A), 29182-29190. https://doi.org/10.1016/j.ceramint.2020.08.091.
  80. Muret, P. (1974), "Optical absorption in polycrystalline thin films of magnetite at room temperature", Solid State Commun., 14(11), 1119-1122. https://doi.org/10.1016/0038-1098(74)90286-5.
  81. Murphy, D.M. (2008), EPR (Electron Paramagnetic Resonance) Spectroscopy of Polycrystalline Oxide Systems, In Metal Oxide Catalysis, Wiley-VCH: Strauss GmbH, Morlenbach, 1, 1-50.
  82. Nachbaur, V., Tauvel, G., Verdier, T., Jean, M., Juraszek, J. and Houvet, D. (2009), "Mecanosynthesis of partially inverted zinc ferrite", J. Alloys Compd., 473(1), 303-307. https://doi.org/10.1016/j.jallcom.2008.05.066.
  83. Nakashima, S., Fujita, K., Tanaka, K., Hirao, K., Yamamoto, T. and Tanaka I. (2007), "First-principles XANES simulations of spinel zinc ferrite with a disordered cation distribution", Phys. Rev. B, 75(17), 174443. https://doi.org/10.1103/PhysRevB.75.174443.
  84. Nassar, M.Y. and Khatab, M. (2016), "Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nanoadsorbent for potential textile dye removal", RSC Adv., 6(83), 79688-79705. https://doi.org/10.1039/C6RA12852A.
  85. Ni, D., Lin, Z., Xiaoling, P., Xinqing, W. and Hongliang, G. (2015), "Preparation and characterization of nickel-zinc ferrites by a solvothermal method", Rare Metal Mater. Eng., 44(9), 2126-2131. https://doi.org/10.1016/S1875-5372(16)30010-8.
  86. Oliver, S.A., Harris, V.G., Hamdeh, H.H. and Ho, J.C. (2000), "Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders", Appl. Phys. Lett., 76(19), 2761-2763. https://doi.org/10.1063/1.126467.
  87. Olsson, R.T., Alvarez, G.S., Hedenqvist, M.S., Gedde, U.W., Lindberg, F. and Savage, S. J. (2005), "Controlled synthesis of near-stoichiometric cobalt ferrite nanoparticles", Chem. Mater., 17(20), 5109-5118. https://doi.org/10.1021/cm0501665.
  88. Pal, U., Madrid, U.S., and Jesus, F.D. (2014), "Controlling size and magnetic properties of Fe3O4 clusters in solvothermal process", Adv. Nano Res., 2(4), 187-198. http://doi.org/10.12989/anr.2014.2.4.187.
  89. Palla, B.J., Shah, D., Casillas, P.E.G. and Matutes-Aquino, J.A. (1999), "Preparation of nanoparticles of barium ferrite from precipitation in microemulsions", J. Nanoparticle Res., 1, 215-221. https://doi.org/10.1023/A:1010004616528.
  90. Pang, Y.L., Lim, S., Ong, H.C. and Chong, W.T. (2016), "Research progress on iron oxide-based magnetic materials: Synthesis techniques and photocatalytic applications", Ceram. Int., 42(1), 9-34. https://doi.org/10.1016/j.ceramint.2015.08.144.
  91. Parc, Y.W., Kim, C., Huang, J.Y. and Ko, I.S. (2009), "The coherency of synchrotron radiation at Pohang Accelerator Laboratory", J. Synchrotron Radiat., 16(5), 642-646. https://doi.org/10.1107/S0909049509024649.
  92. Parmar, H., Upadhyay, R.V., Rayaprol, S. and Siruguri, V. (2015), "Size induced inverse spins canting in CO-Zn system: Neutron diffraction and magnetic studies", J. Magn. Magn. Mater., 377, 133-136. https://doi.org/10.1016/j.jmmm.2014.10.071.
  93. Patange, S.M., Shirsath, S.E., Jadhav, S.S., Lohar, K.S., Mane, D.R. and Jadhav, K.M. (2010), "Rietveld refinement and switching properties of Cr3+ substituted NiFe2O4 ferrites", Mater. Lett., 64(6), 722-724. https://doi.org/10.1016/j.matlet.2009.12.049.
  94. Pemartin, K., Solans, C., Quintana, J.A. and Sanchez-Dominguez, M. (2014), "Synthesis of Mn-Zn ferrite nanoparticles by the oilin-water microemulsion reaction method", Colloids Surf. A Phys., 451, 161-171. https://doi.org/10.1016/j.colsurfa.2014.03.036.
  95. Peng, Y., Xia, C., Cui, M., Yao, Z. and Yi, X. (2021), "Effect of reaction condition on microstructure and properties of (NiCuZn)Fe2O4 nanoparticles synthesized via co-precipitation with ultrasonic irradiation", Ultrasonics Sonochem., 71, 105369. https://doi.org/10.1016/j.ultsonch.2020.105369.
  96. Pereira, C., Pereira, A.M., Fernandes, C., Rocha, M., Mendes, R., Fernandez-Garcia, M.P., Guedes, A., Tavares, P.B., Greneche, J.M., Araujo, J.P. and Freire, C. (2012), "Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: Tuning the particle size and magnetic properties through a novel one-step coprecipitation route", Chem. Mater., 24(8), 1496-1504. https://doi.org/10.1021/cm300301c.
  97. Pouponneau, P., Leroux, J.C. and Martel, S. (2009), "Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization", Biomater., 30(31), 6327-6332. https://doi.org/10.1016/j.biomaterials.2009.08.005.
  98. Rahman, A. Aadil, M., Akhtar, M., Warsi, M.F., Jamil, A., Shakir, I., Shahid, M. (2020), "Magnetically recyclable Ni1-xCdxCeyFe2-yO4-rGO nanocomposite photocatalyst for visible light driven photocatalysis", Ceram. Int., 46(9), 13517-13526. https://doi.org/10.1016/j.ceramint.2020.02.136.
  99. Rai, R.S. and Bajpai, V. (2021), "Recent advances in ZnO nanostructures and their future perspective", Adv. Nano Res., 11(1), 37-54. http://doi.org/10.12989/anr.2021.11.1.037.
  100. Ramachandran, T. and Vishista, K. (2014), "N-N-methylene bis acrylamide: A novel fuel for combustion synthesis of zinc ferrite nanoparticles and studied by x-ray photoelectron spectroscopy", Int. J. ChemTech Res., 6(5), 2834-2842.
  101. Rashdan, S.A. and Hazeem, L.J. (2020), "Synthesis of spinel ferrites nanoparticles and investigating their effect on the growth of microalgae Picochlorum sp", Arab J. Basic Appl. Sci., 27(1), 134-141. https://doi.org/10.1080/25765299.2020.1733174.
  102. Ravel, B. and Newville, M. (2005), "ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT", J. Synchrotr. Radiat., 12(4), 537-541. https://doi.org/10.1107/S0909049505012719.
  103. Reddy, D.H.K. and Yun, Y.S. (2016), "Spinel ferrite magnetic adsorbents: alternative future materials for water purification?", Coordinat. Chem. Rev., 315, 90-111. https://doi.org/10.1016/j.ccr.2016.01.012.
  104. Sagadevan, S., Chowdhury, Z.Z. and Rafique, R.F. (2018), "Preparation and characterization of nickel ferrite nanoparticles via co-precipitation method", Mater. Res., 21(2), 1-5. https://doi.org/10.1590/1980-5373-MR-2016-0533.
  105. Sathiyamurthy, K., Rajeevgandhi, C., Bharanidharan, S., Sugumar, P. and Bose, S. (2020), "Electrochemical and magnetic properties of zinc ferrite nanoparticles through chemical coprecipitation method", Chem. Data Collect., 28, 100477. https://doi.org/10.1016/j.cdc.2020.100477.
  106. Scano, A., Cabras, V., Pilloni, M. and Ennas, G. (2019), "Microemulsions: The renaissance of ferrite nanoparticle synthesis", J. Nanosci. Nanotechnol., 19(8), 4824-4838. https://doi.org/10.1166/jnn.2019.16876.
  107. Schmitt-Rink, S., Miller, D.A.B. and Chemla, D.S. (1987), "Theory of the linear and nonlinear optical properties of semiconductor microcrystallites", Phys. Rev. B, 35(15), 8113-8125. https://doi.org/10.1103/PhysRevB.35.8113.
  108. Sharma, A., Singh, J., Won, S.O., Chae, K.H., Sharma, S.K. and Kumar, S. (2018), Introduction to X-Ray Absorption Spectroscopy and Its Applications in Material Science, In Handbook of Materials Characterization, Springer International Publishing.
  109. Sharma, R., Bansal, S. and Singhal, S. (2015), "Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M = Cu, Zn, Ni and Co) in the structure", RSC Advances, 5(8), 6006-6018. https://doi.org/10.1039/C4RA13692F.
  110. Shirsath, S., Wang, D., Jadhav, S., Mane, M. and Li, S. (2017), Ferrites Obtained by Sol-Gel Method, In Handbook of Sol-Gel Science and Technology, Springer, Cham.
  111. Singh, J., Dixit, G., Srivastava, R., Kumar, H. and Agrawal, H. (2013a), "Magnetic resonance in superparamagnetic zinc ferrite", Bull. Mater. Sci., 36(4), 751-754. https://doi.org/10.1007/s12034-013-0528-2.
  112. Singh, J.P., Dixit, G., Pandey, K., Kumar, H., Srivastava, R.C., Agrawal, H.M. and Asokan, K. (2014), "Spin dynamics investigation in nanosized zinc ferrite irradiated with 200 MeV Ag15+ ions", Mater. Lett., 122, 277-280. https://doi.org/10.1016/j.matlet.2014.02.019.
  113. Singh, J.P., Dixit, G., Srivastava, R.C., Agrawal, H.M. and Kumar, R. (2013b), "Raman and Fourier-transform infrared spectroscopic study of nanosized zinc ferrite irradiated with 200 MeV Ag15+ beam", J. Alloys Compd., 551, 370-375. https://doi.org/10.1016/j.jallcom.2012.10.006.
  114. Singh, J.P., Dixit, G., Srivastava, R.C., Agrawal, H.M., Reddy, V.R. and Gupta, A. (2012), "Observation of bulk like magnetic ordering below the blocking temperature in nanosized zinc ferrite", J. Magn. Magn. Mater., 324(16), 2553-2559. https://doi.org/10.1016/j.jmmm.2012.03.045.
  115. Singh, J.P., Dixit, G., Srivastava, R.C., Negi, P., Agrawal, H.M. and Kumar, R. (2013c), "HRTEM and FTIR investigation of nanosized zinc ferrite irradiated with 100 MeV oxygen ions", Spectrochimica Acta Part A, 107, 326-333. https://doi.org/10.1016/j.saa.2012.12.095.
  116. Singh, J.P., Kim, S.H., Won, S.O., Lim, W.C., Lee, I.J. and Chae, K.H. (2016), "Covalency, hybridization and valence state effects in nano- and micro-sized ZnFe2O4", CrystEngComm, 18(15), 2701-2711. https://doi.org/10.1039/C5CE02461G.
  117. Singh, J.P., Lee, B.H., Lim, W.C., Shim, C.H., Lee, J. and Chae, K. H. (2018), "Microstructure, local electronic structure and optical behaviour of zinc ferrite thin films on glass substrate", Royal Soc. Open Sci., 5(10), 181330. https://doi.org/10.1098/rsos.181330.
  118. Singh, J.P., Srivastava, R.C. and Agrawal, H.M. (2010), "Optical behaviour of zinc ferrite nanoparticles", AIP Conference Proceedings, 1276(1), 137-143. https://doi.org/10.1063/1.3504278.
  119. Singh, J.P., Srivastava, R.C., Agrawal, H.M. and Chand, P. (2009), "Relaxation phenomena in nanostructured zinc ferrite", Int. J. Nanosci., 08(6), 523-531. https://doi.org/10.1142/s0219581x09006456.
  120. Singh, J.P., Srivastava, R.C., Agrawal, H.M., Chand, P. and Kumar, R. (2011a), "Observation of size dependent attributes on the magnetic resonance of irradiated zinc ferrite nanoparticles", Curr. Appl. Phys., 11(3), 532-537. https://doi.org/10.1016/j.cap.2010.09.009.
  121. Singh, J.P., Srivastava, R.C., Agrawal, H.M. and Kumar, R. (2011b), "100 MeV O7+ ion irradiation in nanosized zinc ferrite", Radiat. Effects Defects Solids, 166(8-9), 564-570. https://doi.org/10.1080/10420150.2011.553233.
  122. Singh, J.P., Srivastava, R.C., Agrawal, H.M. and Kumar, R. (2011c), "Micro-Raman investigation of nanosized zinc ferrite: Effect of crystallite size and fluence of irradiation", J. Raman Spectrosc., 42(7), 1510-1517. https://doi.org/10.1002/jrs.2902
  123. Singh, J.P., Srivastava, R.C., Agrawal, H.M., Kushwaha, R.P.S., Chand, P. and Kumar, R. (2008), "EPR study of nanostructured zinc ferrite", Int. J. Nanosci., 07(1), 21-27. https://doi.org/10.1142/s0219581x08005146.
  124. Singh, R.S., Kuritka, I., Vilcakova, J., Jamatia, T., Machovsky, M., Skoda, D., Urbanek, P., Masar, M., Urbanek, M., Kalina, L. and Havlica, J. (2020), "Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles", Ultrasonics Sonochem., 61, 104839. https://doi.org/10.1016/j.ultsonch.2019.104839.
  125. Sivakumar, M., Towata, A., Yasui, K., Tuziuti, T. and Iida, Y. (2006), "A new ultrasonic cavitation approach for the synthesis of zinc ferrite nanocrystals", Curr. Appl. Phys., 6(3), 591-593. https://doi.org/10.1016/j.cap.2005.11.068.
  126. Sivakumar, M., Towata, A., Yasui, K., Tuziuti, T., Kozuka, T., Iida, Y., Maiorov, M.M., Blums, E., Bhattacharya, D., Sivakumar, N. and Ashok, M. (2012), "Ultrasonic cavitation induced water in vegetable oil emulsion droplets - a simple and easy technique to synthesize manganese zinc ferrite nanocrystals with improved magnetization", Ultrasonics Sonochem., 19(3), 652-658. https://doi.org/10.1016/j.ultsonch.2011.10.015.
  127. Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S. and Muthamizhchelvan, C. (2011), "Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties", Mater. Lett., 65(9), 1438-1440. https://doi.org/10.1016/j.matlet.2011.02.026.
  128. Song, Q. and Zhang, Z.J. (2012), "Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture", J. Am. Chem. Soc., 134(24), 10182-10190. https://doi.org/10.1021/ja302856z.
  129. Springer, V., Pecini, E. and Avena, M. (2016), "Magnetic nickel ferrite nanoparticles for removal of dipyrone from aqueous solutions", J. Environ. Chem. Eng., 4(4), 3882-3890. https://doi.org/10.1016/j.jece.2016.08.026.
  130. Stewart, S.J., Figueroa, S.J.A., Lopez, J.M.R., Marchetti, S.G., Bengoa, J.F., Prado, R.J. and Requejo, F.G. (2007), "Cationic exchange in nanosized ZnFe2O4 spinel revealed by experimental and simulated near-edge absorption structure", Phys. Rev. B, 75(7), 073408. https://doi.org/10.1103/PhysRevB.75.073408.
  131. Su, M., He, C. and Shih, K. (2016), "Facile synthesis of morphology and size-controlled α-Fe2O3 and Fe3O4 nano-and microstructures by hydrothermal/solvothermal process: The roles of reaction medium and urea dose", Ceram. Int., 42(13), 14793-14804. https://doi.org/10.1016/j.ceramint.2016.06.111
  132. Syahmazgi, M., Falamaki, C. and Lotfi, A. (2014), "A novel method for the synthesis of nano-magnetite particles", Adv. Nano Res., 2(2), 89-98. http://doi.org/10.12989/anr.2014.2.2.089.
  133. Tadjarodi, A., Imani, M. and Salehi, M. (2015), "ZnFe2O4 nanoparticles and a clay encapsulated ZnFe2O4 nanocomposite: synthesis strategy, structural characteristics and the adsorption of dye pollutants in water", RSC Adv., 5(69), 56145-56156. https://doi.org/10.1039/C5RA02163D.
  134. Tanaka, K., Nakashima, S., Fujita, K. and Hirao, K. (2006), "Large Faraday effect in a short wavelength range for disordered zinc ferrite thin films", J. Appl. Phys., 99(10), 106103. https://doi.org/10.1063/1.2199727.
  135. Tang, Y., Wang, X., Zhang, Q., Li, Y. and Wang, H. (2012), "Solvothermal synthesis of Co1-xNixFe2O4 nanoparticles and its application in ammonia vapors detection", Prog. Natural Sci. Mater. Int., 22(1), 53-58. https://doi.org/10.1016/j.pnsc.2011.12.009.
  136. Tauc, J. (1974), Optical Properties of Amorphous Semiconductors, In Amorphous and Liquid Semiconductors, Springer Boston, MA, U.S.A.
  137. Tauc, J. and Menth, A. (1972), "States in the gap", J. Non Cryst. Solids, 8-10, 569-585. https://doi.org/10.1016/0022-3093(72)90194-9.
  138. Thota, S., Kashyap, S.C., Sharma, S.K. and Reddy, V.R. (2016), "Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: Role of Mn", J. Phys. Chem. Solids, 91, 136-144. https://doi.org/10.1016/j.jpcs.2015.12.013.
  139. Todaka, Y., Nakamura, M., Hattori, S., Tsuchiya, K. and Umemoto, M. (2003), "Synthesis of ferrite nanoparticles by mechanochemical processing using a ball mill", Mater. Transact., 44(2), 277-284. https://doi.org/10.2320/matertrans.44.277.
  140. Torres, I.Z., Dominguez, A.S., Bueno, J.J.P. and Lopez, M.L.M. (2021), "Analyzing corrosion rates of TiO2 nanotubes/titanium separation passive layer under surface and crystallization changes", Adv. Nano Res., 10(3), 211-219. https://doi.org/10.12989/anr.2021.10.3.211.
  141. Upadhyay, C. and Verma, H.C. (2004), "Anomalous change in electron density at nuclear sites in nanosize zinc ferrite", Appl. Phys. Lett., 85(11), 2074-2076. https://doi.org/10.1063/1.1786368.
  142. Upadhyay, C., Verma, H.C., Sathe, V. and Pimpale, A.V. (2007), "Effect of size and synthesis route on the magnetic properties of chemically prepared nanosize ZnFe2O4", J. Magn. Magn. Mater., 312(2), 271-279. https://doi.org/10.1016/j.jmmm.2006.10.448.
  143. Urbach, F. (1953), "The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids", Phys. Rev., 92(5), 1324-1324. https://doi.org/10.1103/PhysRev.92.1324.
  144. Ushakov, M.V., Senthilkumar, B., Selvan, R.K., Felner, I. and Oshtrakh, M.I. (2017), "Mossbauer spectroscopy of NiFe2O4 nanoparticles: The effect of Ni2+ in the Fe3+ local microenvironment in both tetrahedral and octahedral sites", Mater. Chem. Phys., 202, 159-168. https://doi.org/10.1016/j.matchemphys.2017.09.011.
  145. Venkatesh, M., Kumar, G.S., Viji, S., Karthi, S. and Girija, E.K. (2016), "Microwave assisted combustion synthesis and characterization of nickel ferrite nanoplatelets", Modern Electr. Mater., 2(3), 74-78. https://doi.org/10.1016/j.moem.2016.10.003.
  146. Wang, Z., Lazor, P., Saxena, S.K. and Artioli, G. (2002), "Highpressure Raman spectroscopic study of spinel (ZnCr2O4)", J. Solid State Chem., 165(1), 165-170. https://doi.org/10.1006/jssc.2002.9527.
  147. Yan, Z., Gao, J., Li, Y., Zhang, M. and Guo, M. (2015), "Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite", RSC Adv., 5(112), 92778-92787. https://doi.org/10.1039/C5RA17145H.
  148. Yanez-Vilar, S., Sanchez-Andujar, M., Gomez-Aguirre C., Mira, J., Senaris-Rodriguez, M.A. and Castro-Garcia, S. (2009), "A simple solvothermal synthesis of MFe2O4 (M=Mn, Co and Ni) nanoparticles", J. Solid State Chem., 182(10), 2685-2690. http://doi.org/10.1016/j.jssc.2009.07.028.
  149. Yao, T., Qi, Y., Mei, Y., Yang, Y., Aleisa, R., Tong, X. and Wu, J. (2019), "One-step preparation of reduced graphene oxide aerogel loaded with mesoporous copper ferrite nanocubes: a highly efficient catalyst in microwave-assisted Fenton reaction", J. Hazard. Mater., 378, 120712. https://doi.org/10.1016/j.jhazmat.2019.05.105.
  150. Yin, Y., Liu, W., Huo, N. and Yang, S. (2017), "Synthesis of vesicle-like MgFe2O4/graphene 3D network anode material with enhanced lithium storage performance", ACS Sust. Chem. Eng., 5(1), 563-570. https://doi.org/10.1021/acssuschemeng.6b01949
  151. Yu, S.H., Wang, Q.L., Chen, Y., Wang, Y. and Wang, J.H. (2020), "Microwave-assisted synthesis of spinel ferrite nanospherolites", Mater. Lett., 278, 128431. https://doi.org/10.1016/j.matlet.2020.128431.
  152. Zeng, Y., Zhu, X., Xie, J. and Chen, L. (2021), "Ionic liquid coated magnetic core/shell CoFe2O4@SiO2 nanoparticles for the separation/analysis of trace gold in water sample", Adv. Nano Res., 10(3), 295-312. https://doi.org/10.12989/anr.2021.10.3.295
  153. Zhang, L. and Wu, Y. (2013), "Sol-gel synthesized magnetic MnFe2O4 spinel ferrite nanoparticles as novel catalyst for oxidative degradation of methyl orange", J. Nanomater., 1-6. https://doi.org/10.1155/2013/640940.
  154. Zhi-hao, Y., Wei, Y., Jun-hui, J. and Li-de, Z. (2008), "Optical absorption red shift of capped ZnFe2O4 nanoparticle", Chinese Phys. Lett., 15(7), 535. https://doi.org/10.1088/0256-307X/15/7/024.
  155. Zhu, H., Gu, X., Zuo, D., Wang, Z., Wang, N. and Yao K. (2008), "Microemulsion-based synthesis of porous zinc ferrite nanorods and its application in a room-temperature ethanol sensor", Nanotechnology, 19(40), 405503. https://doi.org/10.1088/0957-4484/19/40/405503.