참고문헌
- Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022a), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231.
- Alazwari, M.A., Daikh, A.A. and Eltaher, M.A. (2022b), "Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates", Adv. Nano Res., 12(2), 117-137. https://doi.org/10.12989/anr.2022.12.2.117.
- Akgoz, B. and Civalek, O. (2013), "A size-dependent shear deformation beam model based on the strain gradient elasticity theory", Int. J. Eng. Sci., 70, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.004.
- Akgoz, B. and Civalek, O. (2014a), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20(4), 606-616. https://doi.org/10.1177/1077546312463752.
- Akgoz, B. and Civalek, O. (2014b), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011.
- Barretta, R. Ali Faghidian, S. and Marotti de Sciarra, F. (2019b), "Stress-driven nonlocal integral elasticity for axisymmetric nano-plates", Int. J. Eng. Sci., 136, 38-52. https://doi.org/10.1016/j.ijengsci.2019.01.00.
- Barretta, R., Sciarra, F.M.D. and Vaccaro, M.S. (2019a), "On nonlocal mechanics of curved elastic beams", Int. J. Eng. Sci., 144, 103140. http://doi.org/10.1016/j.ijengsci.2019.103140.
- Bouhadra, A., Menasria, A. and Rachedi, M.A. (2021), "Boundary conditions effect for buckling analysis of porous functionally graded nanobeam", Adv. Nano Res., 10(4), 313-325. http://doi.org/10.12989/anr.2021.10.4.313.
- Civalek, O., Uzun,B., Yayli, M.O., Akgoz, B. (2020), "Sizedependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.
- Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://doi.org/10.12989/sem.2021.80.1.063.
- Ebrahimi, F. and Barati, M. R. (2016), "Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., 4(3), 229-249. https://doi.org/10.12989/anr.2016.4.3.229.
- Ebrahimi, F. and Barati, M. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159(1), 174-182. http://doi.org/10.1016/j.compstruct.2016.09.058.
- Ebrahimi, F., Barati, M.R. and Civalek, O. (2020), "Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures", Eng. Comput., 36, 953-964. https://doi.org/10.1007/s00366-019-00742-z.
- Eltaher, M.A., Fouda, N., El-Midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0.
- Eltaher, M.A. and Abdelrahman, A.A. (2020), "Bending behavior of squared cutout nanobeams incorporating surface stress effects", Steel Compos. Struct., 36, 143-161. http://doi.org/10.12989/scs.2020.36.2.143.
- Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. http://doi.org/10.12989/scs.2018.27.1.109.
- Ghandourah, E.E., Ahmed, H.M., Eltaher, M.A., Attia, M.A., Abdraboh, A.M. (2021), "Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model", Adv. Nano Res., 11(4), 405-422. http://doi.org/10.12989/anr.2021.11.4.405.
- Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
- Karami, B., Janghorban, M. and Li, L. (2018), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronaut., 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011.
- Khadir, A.I., Daikh, A.A. and Eltaher, M. A. (2021), "Novel fourunknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates", Adv. Nano Res., 11(6), 621-640. https://doi.org/10.12989/anr.2021.11.6.621.
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Liu, H. and Lv, Z. (2018), "Uncertain material properties on wave dispersion behaviors of smart magneto-electro-elastic nanobeams", Compos. Struct., 202(15), 615-624. https://doi.org/10.1016/j.compstruct.2018.03.024.
- Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
- Ma, L.H., Ke, L.L., Reddy, J.N., Yang, J., Kitipornchai, S. and Wang, Y.S. (2018b), "Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory", Compos. Struct., 199, 10-23. https://doi.org/10.1016/j.compstruct.2018.05.061.
- Ma, L.H., Ke, L.L., Wang, Y.Z. and Wang, Y.S. (2017), "Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models", Physica E, 86, 253-161. https://doi.org/10.1016/j.physe.2016.10.036.
- Ma, L.H., Ke, L.L., Wang, Y.Z. and Wang, Y.S. (2018a), "Wave propagation analysis of piezoelectric nanoplates based on the nonlocal theory", Int. J. Struct. Stabil. Dyn., 18(4), 1850060. https://doi.org/10.1142/S0219455418500608.
- Malikan, M., Krasheninnikov, M., Eremeyev, V.A. (2020b), "Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field", Int. J. Eng. Sci., 148, 103210. http://doi.org/10.1016/j.ijengsci.2019.103210.
- Malikan, M., Uglov, N.S., Eremeyev, V.A. (2020a), "On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures", Int. J. Eng. Sci., 157, 103395. http://doi.org/10.1016/j.ijengsci.2020.103395.
- Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
- Numanoglu, H.M., Ersoy, H., Akgoz, B. and Civalek, O. (2022), "A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method", Math. Methods Appl. Sci., 45(5), 2592-2614. https://doi.org/10.1002/mma.7942.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. http://doi.org/10.12989/sem.2022.82.2.225.
- She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
- Singh, P.P. and Azam, M.S. (2021), "Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method", Adv. Nano Res.,10(1), 25-42. https://doi.org/10.12989/anr.2021.10.1.025.
- Sun, D. and Luo, S.N., (2011), "The wave propagation and dynamic response of rectangular functionally graded material plates with completed clamped supports under impulse load", Eur. J. Mech. A Solid., 30(3), 396-408. https://doi.org/10.1016/j.euromechsol.2011.01.001.
- Wang, Y.Q. and Liang, C. (2019), "Wave propagation characteristics in nanoporous metal foam nanobeams", Results Phys., 12, 287-297. https://doi.org/10.1016/j.rinp.2018.11.080.
- Wang, Y.Q., Liang, C. and Zu, J.W. (2019), "Wave propagation in functionally graded cylindrical nanoshells based on nonlocal Flugge shell theory", Eur. Phys. J. Plus, 134(5), 233. https://doi.org/10.1140/epjp/i2019-12543-0.
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.
- Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L., (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. http://doi.org/10.12989/scs.2021.38.3.293.
- Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel Compos. Struct., 42(3), 397-405. http://doi.org/10.12989/scs.2022.42.3.397.
- Zhou, W.J., Chen, W.Q., Muhammad, Lim, C.W. (2019), "Surface effect on the propagation of flexural waves in periodic nanobeam and the size-dependent topological properties", Compos. Struct., 216, 427-435. https://doi.org/10.1016/j.compstruct.2019.03.016.