DOI QR코드

DOI QR Code

A hybrid algorithm for classifying rock joints based on improved artificial bee colony and fuzzy C-means clustering algorithm

  • Ji, Duofa (Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology) ;
  • Lei, Weidong (Shenzhen Graduate School, Harbin Institute of Technology) ;
  • Chen, Wenqin (Shenzhen Graduate School, Harbin Institute of Technology)
  • Received : 2019.07.02
  • Accepted : 2022.11.08
  • Published : 2022.11.25

Abstract

This study presents a hybrid algorithm for classifying the rock joints, where the improved artificial bee colony (IABC) and the fuzzy C-means (FCM) clustering algorithms are incorporated to take advantage of the artificial bee colony (ABC) algorithm by tuning the FCM clustering algorithm to obtain the more reasonable and stable result. A coefficient is proposed to reduce the amount of blind random searches and speed up convergence, thus achieving the goals of optimizing and improving the ABC algorithm. The results from the IABC algorithm are used as initial parameters in FCM to avoid falling to the local optimum in the local search, thus obtaining stable classifying results. Two validity indices are adopted to verify the rationality and practicability of the IABC-FCM algorithm in classifying the rock joints, and the optimal amount of joint sets is obtained based on the two validity indices. Two illustrative examples, i.e., the simulated rock joints data and the field-survey rock joints data, are used in the verification to check the feasibility and practicability in rock engineering for the proposed algorithm. The results show that the IABC-FCM algorithm could be applicable in classifying the rock joint sets.

Keywords

Acknowledgement

The authors would like to acknowledge the financial support from research grants No.s 2019YFC1511105, 2021YFC3001002 by National Key R&D Program of China grant No. JCYJ20210324121402008 by Shenzhen Science and Technology Innovation Commission, grant No.s 52008142 and 51778193 by the National Natural Science Foundation of China, grant No. LH2020E057 by the Heilongjiang Provincial Natural Science Foundation of China.

References

  1. Arnold, K.J. (1941), On spherical probability distributions, Massachusetts Institute of Technology, USA.
  2. Bingham, C. (1964), Distributions on the sphere and on the projective plane, PhD dissertation, Yale University.
  3. Cai, M. (2011), "Rock mass characterization and rock property variability considerations for tunnel and cavern design", Rock Mech. Rock Eng., 44(4), 379-399. https://doi.org/10.1007/s00603-011-0138-5
  4. Cannon, R.L., Dave, J.V. and Bezdek, J.C. (1986), "Efficient Implementation of the Fuzzy c-Means Clustering Algorithms", IEEE T. Pattern Anal. Mach. Intell., PAMI-8(2), 248-255. https://doi.org/10.1109/tpami.1986.4767778.
  5. Chen, S., Walske, M.L. and Davies, I.J. (2018), "Rapid mapping and analysing rock mass discontinuities with 3D terrestrial laser scanning in the underground excavation", Int. J. Rock Mech. Min. Sci., 110, 28-35. https://doi.org/10.1016/j.ijrmms.2018.07.012.
  6. Chiu, C.C., Weng, M.C. and Huang, T.H. (2016), "Modeling rock joint behavior using a rough-joint model", Int. J. Rock Mech. Min. Sci., 89, 14-25. https://doi.org/10.1016/j.ijrmms.2016.08.001.
  7. Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J. and Chen, T.J. (2006), "Fuzzy c-means clustering with spatial information for image segmentation", Comput. Med. Imaging Graph., 30(1), 9-15. https://doi.org/10.1016/j.compmedimag.2005.10.001.
  8. Cui, L., Zheng, J., Sheng, Q. and Pan, Y. (2019), "A simplified procedure for the interaction between fully-grouted bolts and rock mass for circular tunnels", Comput. Geotech., 106, 177-192. https://doi.org/10.1016/j.compgeo.2018.10.008.
  9. Dogan, B. and Korurek M. (2012), "A new ECG beat clustering method based on kernelized fuzzy c-means and hybrid ant colony optimization for continuous domains", Appl. Soft Comput., 12(11), 3442-3451. https://doi.org/10.1016/j.asoc.2012.07.007.
  10. Fukuyama Y. and Sugeno M. (1989), "A new method of choosing the number of clusters for the fuzzy c-mean method", in proceedings of fifth fuzzy system symposium, 247-250.
  11. Galindo, R., Andres, J.L., Lara, A., Xu, B., Cao, Z. and Cai, Y. (2021), "Theoretical model for the shear strength of rock discontinuities with non-associated flow laws", Geomech. Eng., 24(4), 307-321. https://doi.org/10.12989/gae.2021.24.4.307.
  12. Gallant, M.J. and Marshall, J.A. (2016), "Automated rapid mapping of joint orientations with mobile LiDAR", Int. J. Rock Mech. Min. Sci., 90, 1-14. https://doi.org/10.1016/j.ijrmms.2016.09.014.
  13. Haghnejad, A., Ahangari, K., Moarefvand, P. and Goshtasbi, K. (2018), "Numerical investigation of the impact of geological discontinuities on the propagation of ground vibrations", Geomech. Eng., 14(6), 545-552. http://dx.doi.org/10.12989/gae.2018.14.6.545.
  14. Hammah, R.E. and Curran J.H. (1998), "Fuzzy cluster algorithm for the automatic identification of joint sets", Int. J. Rock Mech. Min. Sci., 35(7), 889-905. https://doi.org/10.1016/s0148-9062(98)00011-4.
  15. Hammah, R.E. and Curran J.H. (1999), "On distance measures for the fuzzy K-means algorithm for joint data", Rock Mech. Rock Eng., 32 (1), 1-27. https://doi.org/10.1007/s006030050041.
  16. Hammah, R.E. and Curran J.H. (2000), "Validity measures for the fuzzy cluster analysis of orientations", IEEE T. Pattern Anal. Mach. Intell., 22(12), 1467-1472. https://doi.org/10.1109/34.895981.
  17. Hudson, J.A. and Harrison, J.P. (2002), Engineering Rock Mechanics: An Introduction to the Principles, Pergamon, Elsevier Science, Oxford.
  18. Jalalifar, H., Mojedifar, S., Sahebi, A.A. and Nezamabadi-pour, H. (2011), "Application of the adaptive neuro-fuzzy inference system for prediction of a rock engineering classification system", Comput. Geotech., 38(6), 783-7905. https://doi.org/10.1016/j.compgeo.2011.04.005.
  19. Jia H.B., Tang, H., Liu, Y. and Ma, S. (2008), Theory and engineering application of 3-d network modeling of discontinuities in rockmass, Science Press, Beijing.
  20. Jimenez-Rodriguez, R. and Sitar, N. (2006), "A spectral method for clustering of rock discontinuity sets", Int. J. Rock Mech. Min. Sci., 43(7), 1052-1061. https://doi.org/10.1016/j.ijrmms.2006.02.003.
  21. Jimenez, R. (2008), "Fuzzy spectral clustering for identification of rock discontinuity sets", Rock Mech. Rock Eng., 41(6), 929-939. https://doi.org/10.1007/s00603-007-0155-6.
  22. Karaboga, D. and Akay, B. (2009), "A comparative study of Artificial Bee Colony algorithm", Appl. Math. Comput., 214(1), 108-132. https://doi.org/10.1016/j.amc.2009.03.090.
  23. Lei, W.D. (2011), "A new method for processing wave amplitude for numerical analysis in rock dynamics", Int. J. Rock Mech. Min. Sci., 48(4), 674-680. https://doi.org/10.1016/j.ijrmms.2011.01.006.
  24. Lei, W.D., Hefny, A.M., Yan, S. and Teng, J. (2007), "A numerical study on 2-D compressive wave propagation in rock masses with a set of joints along the radial direction normal to the joints", Comput. Geotech., 34(6), 508-523. https://doi.org/10.1016/j.compgeo.2007.01.002.
  25. Li, H., Li, J. and Kang, F. (2011), "Risk analysis of dam based on artificial bee colony algorithm with fuzzy c-means clustering", Can. J. Civ. Eng., 38(5), 483-492. https://doi.org/10.1139/l11-020.
  26. Li, Y., Wang, Q., Chen, J., Xu, L. and Song, S. (2015), "K-means algorithm based on particle swarm optimization for the identification of rock discontinuity sets", Rock Mech. Rock Eng., 48(1), 375-385. https://doi.org/10.1007/s00603-014-0569-x.
  27. Liu, J., Zhao, X.D. and Xu Z. (2017), "Identification of rock discontinuity sets based on a modified affinity propagation algorithm", Int. J. Rock Mech. Min. Sci., 94, 32-42. https://doi.org/10.1016/j.ijrmms.2017.02.012.
  28. Majdi, A. and Beiki, M. (2019), "Applying evolutionary optimization algorithms for improving fuzzy C-mean clustering performance to predict the deformation modulus of rock mass", Int. J. Rock Mech. Min. Sci., 113, 172-182. https://doi.org/10.1016/j.ijrmms.2018.10.030.
  29. Menon, N. and Ramakrishnan, R. (2015), "Brain tumor segmentation in MRI images using unsupervised artificial bee colony algorithm and FCM clustering", Proceedings of the 2015 International Conference on Communications and Signal Processing (ICCSP), IEEE, 0006-0009. https://doi.org/10.1109/iccsp.2015.7322635.
  30. Mirsalimov, V.M. (2021), "Optimal design of shape of a working in cracked rock mass", Geomech. Eng., 24(3), 227-235. https://doi.org/10.12989/gae.2021.24.3.227.
  31. Ozturk, C., Hancer, E. and Karaboga, D. (2015a), "Dynamic clustering with improved binary artificial bee colony algorithm", Appl. Soft Comput., 28, 69-80. https://doi.org/10.1016/j.asoc.2014.11.040.
  32. Ozturk, C., Hancer, E. and Karaboga, D. (2015b), "Improved clustering criterion for image clustering with artificial bee colony algorithm", Pattern Anal. Appl., 18(3), 587-599. https://doi.org/10.1007/s10044-014-0365-y.
  33. Pal, N.R. and Bezdek, J.C. (1995), "On cluster validity for the fuzzy c-means model", IEEE T. Fuzzy Syst., 3(3), 370-379. https://doi.org/10.1109/91.413225.
  34. Pan, D., Li, S., Xu, Z., Zhang, Y., Lin, P. and Li, H. (2019), "A deterministic-stochastic identification and modelling method of discrete fracture networks using laser scanning: Development and case study, Eng. Geol., 262, 105310. https://doi.org/10.1016/j.enggeo.2019.105310
  35. Regassa, B., Xu, N. and Mei, G. (2018), "An equivalent discontinuous modeling method of jointed rock masses for DEM simulation of mining-induced rock movements", Int. J. Rock Mech. Min. Sci., 108, 1-14. https://doi.org/10.1016/j.ijrmms.2018.04.053.
  36. Shanley, R.J. and Mahtab, M.A. (1976), "Delineation and analysis of clusters in orientation data", J. Int. Assoc. Math. Geol., 8(1) 9-23. https://doi.org/10.1016/0148-9062(76)91825-8.
  37. Song, J., Huang R. and Pei, X. (2012), "Particle swarm optimization algorithm based fuzzy c-means cluster analysis for discontinuities occurrence in rock mass", J. Eng. Geol., 20(4), 591-598. (in Chinese).
  38. Su, Z.G., Zhou, H.Y. and Hao, Y.S. (2021), "Evidential evolving C-means clustering method based on artificial bee colony algorithm with variable strings and interactive evaluation mode", Fuzzy Optim. Decis. Mak., 20(3), 293-313. https://doi.org/10.1007/s10700-020-09344-7.
  39. Tereshko, V. (2000), Reaction-diffusion model of a honeybee colony's foraging behaviour, in Parallel Problem Solving from Nature VI,Lecture Notes in Computer Science M. Schoenauer(Editor), Springer-Verlag, Berlin, 807-816. https://doi.org/10.1007/3-540-45356-3_79.
  40. Tereshko, V. and Lee, T. (2002), "How information-mapping patterns determine foraging behaviour of a honey bee colony", Open Syst. Inf. Dyn,. 09(2), 181-193. https://doi.org/10.1023/a:1015652810815.
  41. Tereshko, V. and Loengarov, A. (2005), "Collective decision making in honey-bee foraging dynamics", Comput. Inf. Syst., 9(3), 1-7.
  42. Wang, M., Liu, Y., Qi, B., Li, D. and Wang, W. (2020), "BSE-based dispersion quantification of carbon fibres in cementitious composite through FCM-CA approach", Constr. Build. Mater., 260, 119789. https://doi.org/10.1016/j.conbuildmat.2020.119789.
  43. Xie, X.L. and Beni, G. (1991), "A validity measure for fuzzy clustering", IEEE T. Pattern Anal. Mach. Intell., 13(8), 841-847. https://doi.org/10.1109/34.85677.
  44. Xu, L.M., Chen, J.P., Wang, Q. and Zhou F.J. (2013), "Fuzzy C-means cluster analysis based on mutative scale chaos optimization algorithm for the grouping of discontinuity sets", Rock Mech. Rock Eng., 46(1), 189-198. https://doi.org/10.1007/s00603-012-0244-z.
  45. Xue, X. and Zhou, H. (2018), "Neuro-fuzzy based approach for estimation of concrete compressive strength", Comput. Concret, 21(6), 697-703. http://dx.doi.org/10.12989/cac.2018.21.6.697.
  46. Yang, X.X., Jing, H.W., Tang, C.A. and Yang, S.Q. (2017), "Effect of parallel joint interaction on mechanical behavior of jointed rock mass models", Int. J. Rock Mech. Min. Sci., 92, 40-53. https://doi.org/10.1016/j.ijrmms.2016.12.010.
  47. Zhang, W., Dai, B., Liu, Z. and Zhou, C. (2016), "Modeling discontinuous rock mass based on smoothed finite element method", Comput. Geotech., 79, 22-30. https://doi.org/10.1016/j.compgeo.2016.05.020.
  48. Zhang, L. and . Einstein, H. (2000), "Estimating the intensity of rock discontinuities", Int. J. Rock Mech. Min. Sci., 37(5), 819-837. https://doi.org/10.1016/s1365-1609(00)00022-8.
  49. Zhao, Z., Jing, H., Shi, X., Yang, L., Yin, Q. and Gao, Y. (2021), "Study on bearing characteristic of rock mass with different structures: Physical modeling", Geomech. Eng., 25(3), 179-194. https://doi.org/10.12989/gae.2021.25.3.179.
  50. Zhou, W. and Maerz, N.H. (2002), "Implementation of multivariate clustering methods for characterizing discontinuities data from scanlines and oriented boreholes", Comput. Geosci., 28(7), 827-839. https://doi.org/10.1016/s0098-3004(01)00111-x.