DOI QR코드

DOI QR Code

Numerical study of rock mechanical and fracture property based on CT images

  • Xiao, Nan (School of Civil Engineering, Changsha University of Science and Technology) ;
  • Luo, Li-Cheng (School of Civil Engineering, Changsha University of Science and Technology) ;
  • Huang, Fu (School of Civil Engineering, Changsha University of Science and Technology) ;
  • Ling, Tong-Hua (School of Civil Engineering, Changsha University of Science and Technology)
  • 투고 : 2022.07.04
  • 심사 : 2022.11.14
  • 발행 : 2022.11.25

초록

In this paper, cracks with different angles are prefabricated in rock specimens to study the fracture characteristics of rock based on CT images. The rock specimens are prepared for compression tests according to the standard recommended by ISRM (International Society for Rock Mechanics). The effects of different angles on rock mechanical properties and crack propagation fracture modes are analyzed. Then, based on the cohesive element method and CT images, the relationship between porosity and Young's modulus as well as the fracture property is explored by the numerical modelling. In the modelling, the distribution of Young's modulus is determined by the CT image through the field variable method. The results show that prefabricated cracks reduce the mechanical properties of rock. The closer the angles of the prefabricated crack is, the greater the Young's modulus of the rock sample is. The failure process of each specimen with prefabricated cracks is formed by the initiation and propagation of crack, and the angle of the prefabricated crack will affect the type of extended crack. As part of the numerical model proposed in this paper, the microstructure of rocks is reflected by CT images. The numerical results verify the effectiveness of the cohesive element method in the study of crack propagation for rock. The rock model in this paper can be used to predict engineering disasters such as collapse and landslide caused by rock fracture, which means that the methodology adopted in this paper is comprehensive and important to solve rock engineering problems.

키워드

과제정보

The research was financially supported by The National Natural Science Foundation of China (Grant Nos. 51908067, 51878074).

참고문헌

  1. Altindag, R. and Guney, A. (2006), "ISRM suggested method for determining the shore hardness value for rock", Int. J. Rock. Mech. Min., 43(1), 19-22. https://doi.org/10.1016/j.ijrmms.2005.04.004.
  2. Barenblatt, G.I. (1962), "The mathematical theory of equilibrium cracks in brittle fracture", Adv. Applmech., 7, 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2.
  3. Budiansky, B. and O'Connell R.J. (1976), "Elastic moduli of a cracked solid", Int. J. Solids. Struct., 12(2), 81-97. https://doi.org/10.1016/0020-7683(76)90044-5.
  4. Cascio, M.L., Milazzo, A. and Benedetti, I. (2021), "A hybrid virtual-boundary element formulation for heterogeneous materials", Int. J. Mech. Sci., 199, 106404. https://doi.org/10.1016/j.ijmecsci.2021.106404.
  5. Cheng, Y., Song, Z.S., Song, W.X., Li, S.G., Yang, T.T., Zhang, Z.K., Wang, T. and Wang, K.S. (2021), "Strain performance and fracture response characteristics of hard rock under cyclic disturbance loading", Geomech. Eng., 26(6), 551-563. https://doi.org/10.12989/gae.2021.26.6.551
  6. Chen, S.J., Ren, M.Z., Wang, F., Yin, D.W. and Chen, D.H. (2020), "Mechanical properties and failure mechanisms of sandstone with pyrite concretions under uniaxial compression", Geomech. Eng., 22(5), 385-396. https://doi.org/10.12989/gae.2020.22.5.385.
  7. Chong, S.H., Cho, G.C., Hong, E.S. and Lee, S.W. (2017), "Numerical study of anomaly detection under rail track using a time-variant moving train load", Geomech. Eng., 13(1), 161-171. https://doi.org/10.12989/gae.2017.13.1.161.
  8. Dehghanbanadaki, A., Motamedi, S. and Ahmad, K (2020), "FEM-based modelling of stabilized fibrous peat by endbearing cement deep mixing columns", Geomech. Eng., 20(1), 75-86. https://doi.org/10.12989/gae.2020.20.1.075.
  9. Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solids., 8(2), 100-104. https://doi.org/10.1016/0022-5096(60)90013-2.
  10. Fakhimi, A. and Alavi Gharahbagh, E. (2011), "Discrete element analysis of the effect of pore size and pore distribution on the mechanical behavior of rock", Int. J. Rock. Mech. Min., 48(1), 77-85. https://doi.org/10.1016/j.ijrmms.2010.08.007.
  11. Galindo, R., Andres, J.L., Lara, A., Xu, B., Cao, Z.G. and Cai, Y.Q. (2021), "Theoretical model for the shear strength of rock discontinuities with non-associated flow laws", Geomech. Eng., 24(4), 307-321. https://doi.org/10.12989/gae.2021.24.4.307.
  12. Hashin, Z. (1988), "The differential scheme and its application to cracked materials", J. Mech. Phys. Solids., 36(6), 719-734. https://doi.org/10.1016/0022-5096(88)90005-1.
  13. Hillerborg, A., Modeer, M. and Eersson P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement. Concrete. Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7.
  14. Hoover, C.G. and Bazant, Z.P. (2014), "Cohesive crack, size effect, crack band and work-of-fracture models compared to comprehensive concrete fracture tests", Int. J. Fracture., 187, 133-143. https://doi.org/10.1007/s10704-013-9926-0.
  15. Hong, S.K., Oh, D.K., Kong, S.M. and Lee, Y.J. (2020), "Investigation of divergence tunnel excavation according to horizontal offsets between tunnels", Geomech. Eng., 21(2), 111-122. https://doi.org/10.12989/gae.2020.21.2.111.
  16. Jaiswal, A. and Kumar, R. (2022), "Finite element analysis of granular column for various encasement conditions subjected to shear load", Geomech. Eng., 29(6), 645-655. https://doi.org/10.12989/gae.2022.29.6.645.
  17. Jiang, H.X. and Meng, D.G. (2018), "3D numerical modelling of rock fracture with a hybrid finite and cohesive element method", Eng. Fract. Mech., 199, 280-293. https://doi.org/10.1016/j.engfracmech.2018.05.037.
  18. Lee, H.W. and Jeon, S.W. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids. Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
  19. Leonel, E.D. and Venturini, W.S. (2011), "Multiple random crack propagation using a boundary element formulation", Eng. Fract. Mech., 78(6), 1077-1090. https://doi.org/10.1016/j.engfracmech.2010.11.012.
  20. Li, H.Q. and Wong, L.N.Y. (2012), "Influence of flaw inclination angle and loading condition on crack initiation and propagation", Int. J. Solids. Struct., 49(18), 2482-2499. https://doi.org/10.1016/j.ijsolstr.2012.05.012.
  21. Liu, X.R., Liu, D.S., Xiong, F., Han, Y.F., Liu, R.H., Meng, Q.J., Zhong, Z.L., Chen, Q.,Weng, C.X. and Liu, W.W. (2022), "Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different coverspan ratios", Geomech. Eng., 28(3), 265-281. https://doi.org/10.12989/gae.2022.28.3.265.
  22. Lomax, H., Pulliam, T.H., Zingg, D.W. and Kowalewski, T.A. (2002), "Fundamentals of computational fluid dynamics", Appl. Mech. Rev., 55(4), B61. https://doi.org/10.1115/1.1483340.
  23. Nguyen, N.H.T., Bui, H.H., Nguyen, G.D. and Kodikara, J. (2017), "A cohesive damage-plasticity model for DEM and its application for numerical investigation of soft rock fracture properties", Int. J. Plasticity., 98, 175-196. https://doi.org/10.1016/j.ijplas.2017.07.008.
  24. Pabst, W. and Gregorova, E. (2004), "Mooney-type relation for the porosity dependence of the effective tensile modulus of ceramics", J. Mater. Sci., 39, 3213-3215. https://doi.org/10.1023/B:JMSC.0000025863.55408.c9.
  25. Pabst, W., Gregorova, E. and Cerny, M. (2013), "Isothermal and adiabatic Young's moduli of alumina and zirconia ceramics at elevated temperatures", J. Eur. Ceram. Soc., 33(15-16), 3085-3093. https://doi.org/10.1016/j.jeurceramsoc.2013.06.012.
  26. Pan, C., Li, X., He, L. and Li, J.C. (2021), "Study on the effect of micro-geometric heterogeneity on mechanical properties of brittle rock using a grain-based discrete element method coupling with the cohesive zone model", Int. J. Rock. Mech. Min., 140, 104680. https://doi.org/10.1016/j.ijrmms.2021.104680.
  27. Pradhan, S.P. and Siddique, T. (2020), "Stability assessment of landslide-prone road cut rock slopes in Himalayan terrain: A finite element method based approach", J. Rock. Mech. Geotech., 12(1), 59-73. https://doi.org/10.1016/j.jrmge.2018.12.018.
  28. Scholtes, L. and Donze, F.V. (2012), "Modelling progressive failure in fractured rock masses using a 3D discrete element method", Int. J. Rock. Mech. Min., 52, 18-30. https://doi.org/10.1016/j.ijrmms.2012.02.009.
  29. Song, S.H., Paulino, G.H. and Buttlar, W.G. (2006), "A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material", Eng. Fract. Mech., 73(18), 2829-2848. https://doi.org/10.1016/j.engfracmech.2006.04.030.
  30. Su, X.T., Yang, Z.J. and Liu, G.H. (2010a), "Finite element modelling of complex 3D static and dynamic crack propagation by embedding cohesive elements in abaqus", Acta. Mech. Solida. Sin., 23(3), 271-282. https://doi.org/10.1016/S0894-9166(10)60030-4.
  31. Su, X.T., Yang, Z.J. and Liu, G.H. (2010b), "Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: A 3D study", Int. J. Solids. Struct., 47(17), 2336-2345. https://doi.org/10.1016/j.ijsolstr.2010.04.031.
  32. Unger, J.F., Eckardt, S. and Konke, C. (2007), "Modelling of cohesive crack growth in concrete structures with the extended finite element method", Comput. Method. Appl. M., 196(41-44), 4087-4100. https://doi.org/10.1016/j.cma.2007.03.023.
  33. Wu, K., Shao, Z.S., Qin, S. and Zhao, N.N. (2019), "Mechanical analysis of tunnels supported by yieldable steel ribs in rheological rocks", Geomech. Eng., 19(1), 61-70. https://doi.org/10.12989/gae.2019.19.1.061.
  34. Wu, Z.J., Xu, X.Y., Liu, Q.S. and Yang, Y.T. (2018), "A zerothickness cohesive element-based numerical manifold method for rock mechanical behavior with micro-Voronoi grains", Eng. Anal. Bound. Elem., 96, 94-108. https://doi.org/10.1016/j.enganabound.2018.08.005
  35. Xie, Y.S., Cao, P., Liu, J. and Dong, L.W. (2016), "Influence of crack surface friction on crack initiation and propagation: A numerical investigation based on extended finite element method", Comput. Geotech., 74, 1-14. https://doi.org/10.1016/j.compgeo.2015.12.013.
  36. Yang, S.Q., Tian, W.L., Huang, Y.H., Ma, Z.G., Fan, L.F. and Wu, Z.J. (2018), "Experimental and discrete element modeling on cracking behavior of sandstone containing a single oval flaw under uniaxial compression", Eng. Fract. Mech., 194, 154-174. https://doi.org/10.1016/j.engfracmech.2018.03.003.
  37. Zhao, B.Y., Huang, T.Z., Liu, D.Y., Liu, Y., Wang, X.P., Liu, S. and Yu, G.B. (2019), "Study on the mechanical properties test and constitutive model of rock salt", Geomech. Eng., 18(3), 291-298. https://doi.org/10.12989/gae.2019.18.3.291.
  38. Zhou, W., Tang, L.W., Liu, X.H., Ma, G. and Chen, M.X. (2016), "Mesoscopic simulation of the dynamic tensile behaviour of concrete based on a rate-dependent cohesive model", Int. J. Impact. Eng., 95, 165-175. https://doi.org/10.1016/j.ijimpeng.2016.05.003
  39. Zhou, X.P. and Xiao, N. (2017), "A novel 3D geometrical reconstruction model for porous rocks", Eng. Geol., 228, 371-384. https://doi.org/10.1016/j.enggeo.2017.08.021.