과제정보
The research was financially supported by The National Natural Science Foundation of China (Grant Nos. 51908067, 51878074).
참고문헌
- Altindag, R. and Guney, A. (2006), "ISRM suggested method for determining the shore hardness value for rock", Int. J. Rock. Mech. Min., 43(1), 19-22. https://doi.org/10.1016/j.ijrmms.2005.04.004.
- Barenblatt, G.I. (1962), "The mathematical theory of equilibrium cracks in brittle fracture", Adv. Applmech., 7, 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2.
- Budiansky, B. and O'Connell R.J. (1976), "Elastic moduli of a cracked solid", Int. J. Solids. Struct., 12(2), 81-97. https://doi.org/10.1016/0020-7683(76)90044-5.
- Cascio, M.L., Milazzo, A. and Benedetti, I. (2021), "A hybrid virtual-boundary element formulation for heterogeneous materials", Int. J. Mech. Sci., 199, 106404. https://doi.org/10.1016/j.ijmecsci.2021.106404.
- Cheng, Y., Song, Z.S., Song, W.X., Li, S.G., Yang, T.T., Zhang, Z.K., Wang, T. and Wang, K.S. (2021), "Strain performance and fracture response characteristics of hard rock under cyclic disturbance loading", Geomech. Eng., 26(6), 551-563. https://doi.org/10.12989/gae.2021.26.6.551
- Chen, S.J., Ren, M.Z., Wang, F., Yin, D.W. and Chen, D.H. (2020), "Mechanical properties and failure mechanisms of sandstone with pyrite concretions under uniaxial compression", Geomech. Eng., 22(5), 385-396. https://doi.org/10.12989/gae.2020.22.5.385.
- Chong, S.H., Cho, G.C., Hong, E.S. and Lee, S.W. (2017), "Numerical study of anomaly detection under rail track using a time-variant moving train load", Geomech. Eng., 13(1), 161-171. https://doi.org/10.12989/gae.2017.13.1.161.
- Dehghanbanadaki, A., Motamedi, S. and Ahmad, K (2020), "FEM-based modelling of stabilized fibrous peat by endbearing cement deep mixing columns", Geomech. Eng., 20(1), 75-86. https://doi.org/10.12989/gae.2020.20.1.075.
- Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solids., 8(2), 100-104. https://doi.org/10.1016/0022-5096(60)90013-2.
- Fakhimi, A. and Alavi Gharahbagh, E. (2011), "Discrete element analysis of the effect of pore size and pore distribution on the mechanical behavior of rock", Int. J. Rock. Mech. Min., 48(1), 77-85. https://doi.org/10.1016/j.ijrmms.2010.08.007.
- Galindo, R., Andres, J.L., Lara, A., Xu, B., Cao, Z.G. and Cai, Y.Q. (2021), "Theoretical model for the shear strength of rock discontinuities with non-associated flow laws", Geomech. Eng., 24(4), 307-321. https://doi.org/10.12989/gae.2021.24.4.307.
- Hashin, Z. (1988), "The differential scheme and its application to cracked materials", J. Mech. Phys. Solids., 36(6), 719-734. https://doi.org/10.1016/0022-5096(88)90005-1.
- Hillerborg, A., Modeer, M. and Eersson P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement. Concrete. Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7.
- Hoover, C.G. and Bazant, Z.P. (2014), "Cohesive crack, size effect, crack band and work-of-fracture models compared to comprehensive concrete fracture tests", Int. J. Fracture., 187, 133-143. https://doi.org/10.1007/s10704-013-9926-0.
- Hong, S.K., Oh, D.K., Kong, S.M. and Lee, Y.J. (2020), "Investigation of divergence tunnel excavation according to horizontal offsets between tunnels", Geomech. Eng., 21(2), 111-122. https://doi.org/10.12989/gae.2020.21.2.111.
- Jaiswal, A. and Kumar, R. (2022), "Finite element analysis of granular column for various encasement conditions subjected to shear load", Geomech. Eng., 29(6), 645-655. https://doi.org/10.12989/gae.2022.29.6.645.
- Jiang, H.X. and Meng, D.G. (2018), "3D numerical modelling of rock fracture with a hybrid finite and cohesive element method", Eng. Fract. Mech., 199, 280-293. https://doi.org/10.1016/j.engfracmech.2018.05.037.
- Lee, H.W. and Jeon, S.W. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids. Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
- Leonel, E.D. and Venturini, W.S. (2011), "Multiple random crack propagation using a boundary element formulation", Eng. Fract. Mech., 78(6), 1077-1090. https://doi.org/10.1016/j.engfracmech.2010.11.012.
- Li, H.Q. and Wong, L.N.Y. (2012), "Influence of flaw inclination angle and loading condition on crack initiation and propagation", Int. J. Solids. Struct., 49(18), 2482-2499. https://doi.org/10.1016/j.ijsolstr.2012.05.012.
- Liu, X.R., Liu, D.S., Xiong, F., Han, Y.F., Liu, R.H., Meng, Q.J., Zhong, Z.L., Chen, Q.,Weng, C.X. and Liu, W.W. (2022), "Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different coverspan ratios", Geomech. Eng., 28(3), 265-281. https://doi.org/10.12989/gae.2022.28.3.265.
- Lomax, H., Pulliam, T.H., Zingg, D.W. and Kowalewski, T.A. (2002), "Fundamentals of computational fluid dynamics", Appl. Mech. Rev., 55(4), B61. https://doi.org/10.1115/1.1483340.
- Nguyen, N.H.T., Bui, H.H., Nguyen, G.D. and Kodikara, J. (2017), "A cohesive damage-plasticity model for DEM and its application for numerical investigation of soft rock fracture properties", Int. J. Plasticity., 98, 175-196. https://doi.org/10.1016/j.ijplas.2017.07.008.
- Pabst, W. and Gregorova, E. (2004), "Mooney-type relation for the porosity dependence of the effective tensile modulus of ceramics", J. Mater. Sci., 39, 3213-3215. https://doi.org/10.1023/B:JMSC.0000025863.55408.c9.
- Pabst, W., Gregorova, E. and Cerny, M. (2013), "Isothermal and adiabatic Young's moduli of alumina and zirconia ceramics at elevated temperatures", J. Eur. Ceram. Soc., 33(15-16), 3085-3093. https://doi.org/10.1016/j.jeurceramsoc.2013.06.012.
- Pan, C., Li, X., He, L. and Li, J.C. (2021), "Study on the effect of micro-geometric heterogeneity on mechanical properties of brittle rock using a grain-based discrete element method coupling with the cohesive zone model", Int. J. Rock. Mech. Min., 140, 104680. https://doi.org/10.1016/j.ijrmms.2021.104680.
- Pradhan, S.P. and Siddique, T. (2020), "Stability assessment of landslide-prone road cut rock slopes in Himalayan terrain: A finite element method based approach", J. Rock. Mech. Geotech., 12(1), 59-73. https://doi.org/10.1016/j.jrmge.2018.12.018.
- Scholtes, L. and Donze, F.V. (2012), "Modelling progressive failure in fractured rock masses using a 3D discrete element method", Int. J. Rock. Mech. Min., 52, 18-30. https://doi.org/10.1016/j.ijrmms.2012.02.009.
- Song, S.H., Paulino, G.H. and Buttlar, W.G. (2006), "A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material", Eng. Fract. Mech., 73(18), 2829-2848. https://doi.org/10.1016/j.engfracmech.2006.04.030.
- Su, X.T., Yang, Z.J. and Liu, G.H. (2010a), "Finite element modelling of complex 3D static and dynamic crack propagation by embedding cohesive elements in abaqus", Acta. Mech. Solida. Sin., 23(3), 271-282. https://doi.org/10.1016/S0894-9166(10)60030-4.
- Su, X.T., Yang, Z.J. and Liu, G.H. (2010b), "Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: A 3D study", Int. J. Solids. Struct., 47(17), 2336-2345. https://doi.org/10.1016/j.ijsolstr.2010.04.031.
- Unger, J.F., Eckardt, S. and Konke, C. (2007), "Modelling of cohesive crack growth in concrete structures with the extended finite element method", Comput. Method. Appl. M., 196(41-44), 4087-4100. https://doi.org/10.1016/j.cma.2007.03.023.
- Wu, K., Shao, Z.S., Qin, S. and Zhao, N.N. (2019), "Mechanical analysis of tunnels supported by yieldable steel ribs in rheological rocks", Geomech. Eng., 19(1), 61-70. https://doi.org/10.12989/gae.2019.19.1.061.
- Wu, Z.J., Xu, X.Y., Liu, Q.S. and Yang, Y.T. (2018), "A zerothickness cohesive element-based numerical manifold method for rock mechanical behavior with micro-Voronoi grains", Eng. Anal. Bound. Elem., 96, 94-108. https://doi.org/10.1016/j.enganabound.2018.08.005
- Xie, Y.S., Cao, P., Liu, J. and Dong, L.W. (2016), "Influence of crack surface friction on crack initiation and propagation: A numerical investigation based on extended finite element method", Comput. Geotech., 74, 1-14. https://doi.org/10.1016/j.compgeo.2015.12.013.
- Yang, S.Q., Tian, W.L., Huang, Y.H., Ma, Z.G., Fan, L.F. and Wu, Z.J. (2018), "Experimental and discrete element modeling on cracking behavior of sandstone containing a single oval flaw under uniaxial compression", Eng. Fract. Mech., 194, 154-174. https://doi.org/10.1016/j.engfracmech.2018.03.003.
- Zhao, B.Y., Huang, T.Z., Liu, D.Y., Liu, Y., Wang, X.P., Liu, S. and Yu, G.B. (2019), "Study on the mechanical properties test and constitutive model of rock salt", Geomech. Eng., 18(3), 291-298. https://doi.org/10.12989/gae.2019.18.3.291.
- Zhou, W., Tang, L.W., Liu, X.H., Ma, G. and Chen, M.X. (2016), "Mesoscopic simulation of the dynamic tensile behaviour of concrete based on a rate-dependent cohesive model", Int. J. Impact. Eng., 95, 165-175. https://doi.org/10.1016/j.ijimpeng.2016.05.003
- Zhou, X.P. and Xiao, N. (2017), "A novel 3D geometrical reconstruction model for porous rocks", Eng. Geol., 228, 371-384. https://doi.org/10.1016/j.enggeo.2017.08.021.