Acknowledgement
본 연구는 현대기아자동차와 현대 NGV의 연구비 지원을 받아 수행되었음을 밝히며 이에 감사드립니다.
References
- P. Arora and Z. Zhang, Battery separators, Chem. Rev., 104, 4419-4462 (2004). https://doi.org/10.1021/cr020738u
- H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci., 7, 3857-3886 (2014). https://doi.org/10.1039/C4EE01432D
- T. Nestler, R. Schmid, W. Munchgesang, V. Bazhenov, J. Schilm, T. Leisegang, and D. C. Meyer, Separators - Technology review: Ceramic based separators for secondary batteries, AIP Conference Proceedings, 1597, 155 (2014).
- H.-S. Jeong, D. W. Kim, Y. U. Jeong, and S.-Y. Lee, Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoridehexafluoropropylene)-based ceramic composite separators for lithium-ion batteries, J. Power Sources, 195(18), 6116-6121 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.085
- M. Kim, Y.-C. Nho, and J. H. Park, Electrochemical performances of inorganic membrane coated electrodes for Li-ion batteries, J. Solid State Electrochem., 14, 769-773 (2010). https://doi.org/10.1007/s10008-009-0851-0
- S.-Y. Lee, D.-J. Seo, J.-Y. Sohn, S.-K. Kim, J.-H. Hong, Y.-S. Kim, and H.-M. Jang, Organic/inorganic composite separator having morphology gradient, manufacturing method thereof and electrochemical device containing the same, US Patents 7, 638, 241 (2022).
- S.-K Kim, J.-Y Sohn, J.-H Park, H.-M Jang, B.-J Shin, S.-Y Lee, and J.-H Hong, Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same, US Patents 7, 709, 152 (2022).
- G. Horpel, V Hennige, C. Hying, S. Augustin, and C. Jost, Use of a ceramic separator in lithium ion batteries, comprising an electrolyte containing ionic fluids, US Patents 9, 214, 659 (2022).
- D. Yeon, Y. Lee, M. H. Ryou, and Y. M. Lee, New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries, Electrochim. Acta, 157, 282-289 (2015). https://doi.org/10.1016/j.electacta.2015.01.078
- D. H. Han, M. Zhang, P. X. Lu, Y. L. Wan, Q. L. Chen, H. Y. Niu, and Z. W. Yu, A multifunctional separator with Mg(OH)2 nanoflake coatings for safe lithium-metal batteries, J. Energy Chem., 52, 75-83 (2021). https://doi.org/10.1016/j.jechem.2020.04.043
- B. Jung, B. Lee, Y. C. Jeong, J. Lee, S. R. Yang, H. Kim, and M. Park, Thermally stable non-aqueous ceramiccoated separators with enhanced nail penetration performance, J. Power Sources, 427, 271-282 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.046
- Y. Lee, H. Lee, T. Lee, M. H. Ryou, and Y. M. Lee, Synergistic thermal stabilization of ceramic/co-polyimide coated polypropylene separators for lithium-ion batteries, J. Power Sources, 294, 537-544 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.106
- Q. Liu, M. Xia, J. Chen, Y. Tao, Y. Wang, K. Liu, M. Li, W. Wang, and D. Wang, High performance hybrid Al2O3/poly(vinyl alcohol-co-ethylene) nanofibrous membrane for lithium-ion battery separator, Electrochim. Acta, 176, 949-955 (2015). https://doi.org/10.1016/j.electacta.2015.07.104
- J. H. Park, W. Park, J. H. Kim, D. Ryoo, H. S. Kim, Y. U. Jeong, D. W. Kim, and S. Y. Lee, Close-packed poly(methyl methacrylate) nanoparticle arrays-coated polyethylene separators for high-power lithium-ion polymer batteries, J. Power Sources, 196, 7035-7038(2011). https://doi.org/10.1016/j.jpowsour.2010.09.102
- Y. Roh, U. Kim, and Y.-M. Lee, Physical and electrochemical properties of ceramic-coated separators with different ceramic types for lithium-ion batteries, J. Korean Battery Soc., 1, 106-112 (2021). https://doi.org/10.53619/KOBS.2021.12.1.2.106
- Y. Roh, D. Jin, E. Kim, S. Byun, Y. S. Lee, M. H. Ryou, and Y. M. Lee, Highly improved thermal stability of the ceramic coating layer on the polyethylene separator via chemical crosslinking between ceramic particles and polymeric binders, Chem. Eng. J., 433, 134501 (2022). https://doi.org/10.1016/j.cej.2022.134501
- H. Jeon, Y. Roh, D. Jin, M. H. Ryou, Y. C. Jeong, and Y. M. Lee, Crosslinkable polyhedral silsesquioxane-based ceramic-coated separators for Li-ion batteries, J. Indust. Eng. Chem., 71, 277-283 (2019). https://doi.org/10.1016/j.jiec.2018.11.036
- A. Yanguas-Gil, Growth and transport in nanostructured materials: Reactive transportation in PVD, CVD, and ALD, Springer (2016).
- G. L. Doll, B. A. Mensah, H. Mohseni, and T. W. Scharf, Chemical vapor deposition and atomic layer deposition of coatings for mechanical applications, J. Thermal Spray Technol., 19, 510-516 (2010). https://doi.org/10.1007/s11666-009-9364-8
- S. Li, S. Wang, D. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golverg, and G. Eda, Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals, Appl. Mater. Today, 1, 60-66 (2015). https://doi.org/10.1016/j.apmt.2015.09.001
- Y. Qi, B. Deng, X. Guo, S. Chen, J. Gao, T. Li, Z. Dou, H. Ci, J. Sun, Z. Chen, R. Wang, L. Cui, X. Chen, K. Chen, H. Wang, S. Wang, P. Gao, M. H. Rummeli, H. Peng, Y. Zhang, and Z. Liu, Switching vertical to horizontal graphene growth using faraday cage-assisted PECVD approach for high-performance transparent heating device, Adv. Mater., 30(8), 1704839 (2018). https://doi.org/10.1002/adma.201704839
- D. BARRECA, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, A. Pozza, and E. Tondello, CVD Co3O4 nanopyramids: a nano-platform for photo-assisted H2 production, Chem. Vap. Depos., 16(10-12), 296-300 (2010). https://doi.org/10.1002/cvde.201004289
- P. M. Sousa, A. J. Silvestre, N. Popovici, and O. Conde, Morphological and structural characterization of CrO2/Cr2O3 films grown by Laser-CVD, Appl. Surf. Sci., 247, 423-428 (2005). https://doi.org/10.1016/j.apsusc.2005.01.061
- K. Chan and K. K. Gleason, Initiated CVD of poly (methyl methacrylate) thin films, Chem. Vap. Depos., 11(10), 437-443 (2005). https://doi.org/10.1002/cvde.200506381
- K. L. Choy, Chemical vapour deposition of coatings, Prog. Mater. Sci., 48(2), 57-170 (2003). https://doi.org/10.1016/S0079-6425(01)00009-3
- S. M. George, Atomic layer deposition: An overview, Chem. Rev., 110(1), 111-131 (2010). https://doi.org/10.1021/cr900056b
- R. L. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/ water process, J. Appl. Phys., 97, 121301 (2005). https://doi.org/10.1063/1.1940727
- S. M. George, A. W. Ott, and J. W. Klaus, Surface chemistry for atomic layer growth, J. Phys. Chem., 100(31), 13121-13131 (1996). https://doi.org/10.1021/jp9536763
- D. M. Mattox, Physical vapor deposition (PVD) processes, Met. Finish., 97, 1 (2000).
- H. Adachi and K. Wasa, Handbook of sputtering technology, 2nd ed., 3-39, Elsevier (2012).
- A. Baptista, F. Silva, J. Porteiro, J. Miguez, and G. Pinto, Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands, Coatings, 8(11), 402 (2018). https://doi.org/10.3390/coatings8110402
- J. Greener, G. Plearson, and M. Cakmak (eds.), Roll-toroll manufacturing: Process elements and recent advances, John Wiley & Sons (2018).
- Y. Lin and X. Chen (eds.), Advanced nano deposition methods, John Wiley & Sons (2016).
- H. Conrads and M. Schmidt, Plasma generation and plasma sources, Plasma Sources Sci. Technol., 9, 441 (2000). https://doi.org/10.1088/0963-0252/9/4/301
- R. Behrisch and W. Eckstein (eds.), Sputtering by particle bombardment: Experiments and computer calculations from threshold to MeV energies, Springer Science & Business Media (2007).
- W. D. Westwood, S. Maniv, and P. J. Scanlon, The current-voltage characteristic of magnetron sputtering systems, J. Appl. Phys., 54, 6841 (1983). https://doi.org/10.1063/1.332006
- M. B. Assouar, O. Elmazria, L. le Brizoual, and P. Alnot, Reactive DC magnetron sputtering of aluminum nitride films for surface acoustic wave devices, Diam. Relat. Mater., 11(3-6), 413-417 (2002). https://doi.org/10.1016/S0925-9635(01)00708-7
- M. H. Suhail, G. M. Rao, and S. Mohan, dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films, J. Appl. Phys., 71, 1421 (1998).
- W. A. Pliskin, Comparison of properties of dielectric films deposited by various methods, J. Vac. Sci. Technol., 14, 1064 (1977). https://doi.org/10.1116/1.569413
- S. Chowdhury, M. T. Laugier, and I. Z. Rahman, Effect of target self-bias voltage on the mechanical properties of diamond-like carbon films deposited by RF magnetron sputtering, Thin Solid Films, 468(1-2), 149-154 (2004). https://doi.org/10.1016/j.tsf.2004.04.006
- M. Mieno and T. Yoshida, Preparation of cubic boron nitride films by RF sputtering, Jpn. J. Appl. Phys., 29, 1175-1177 (1990).
- R. Boulmani, M. Bendahan, C. Lambert-Mauriat, M. Gillet, and K. Aguir, Correlation between rf-sputtering parameters and WO3 sensor response towards ozone, Sens. Actuators B Chem., 125, 622-627 (2007). https://doi.org/10.1016/j.snb.2007.03.011
- P. J. Kelly and R. D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, 56, 159-172 (2000). https://doi.org/10.1016/S0042-207X(99)00189-X
- S. Swann, Magnetron sputtering, Phys. Technol., 19, 67 (1988). https://doi.org/10.1088/0305-4624/19/2/304
- S. Ido, M. Kashiwagi, and M. Takahashi, Computational studies of plasma generation and control in a magnetron sputtering system, Jpn. J. Appl. Phys., 38, 4450 (1999). https://doi.org/10.1143/JJAP.38.4450
- Zheng, B., Fu, Y., Wang, K., Schuelke, T., & Fan, Q. H, Electron dynamics in radio frequency magnetron sputtering argon discharges with a dielectric target, Plasma Sources Science and Technology, 30, (2021).
- J. A. Thornton, Magnetron sputtering: basic physics and application to cylindrical magnetrons, J. Vac. Sci. Technol., 15, 171 (1998). https://doi.org/10.1116/1.569448
- R. D. Arnell and P. J. Kelly, Recent advances in magnetron sputtering, Surf. Coat. Technol., 112(1-3), 170-176 (1999). https://doi.org/10.1016/S0257-8972(98)00749-X
- G. Brauer, B. Szyszka, M. Vergohl, and R. Bandorf, Magnetron sputtering - milestones of 30 years, Vacuum, 84(12), 1354-1359 (2010). https://doi.org/10.1016/j.vacuum.2009.12.014
- M.V. Castro, C.J. Tavares, Dependence of Ga-doped ZnO thin film properties on different sputtering process parameters: Substrate temperature, sputtering pressure and bias voltage, Thin Solid Films, 586, 13-21 (2015). https://doi.org/10.1016/j.tsf.2015.04.036
- S. Lobe, A. Bauer, S. Uhlenbruck, and D. FattakhovaRohlfing, Physical vapor deposition in solid-state battery development: From materials to devices, Adv. Sci., 8(11), 2002044 (2021). https://doi.org/10.1002/advs.202002044
- M. Kim and J. H. Park, Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery, J. Power Sources, 212, 22-27 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.038
- Y. Yoo, B. G. Kim, K. Pak, S. J. Han, H. S. Song, J. W. Choi, and S. G. Im, Initiated chemical vapor deposition (iCVD) of highly cross-linked polymer films for advanced lithium-ion battery separators, ACS Appl. Mater. Interfaces, 7, 18849-18855 (2015). https://doi.org/10.1021/acsami.5b05720
- T. Lei, W. Chen, W. Lv, J. Huang, J. Zhu, J. Chu, C. Yan, C. Wu, Y. Yan, W. He, J. Xiong, Y. Li, C. Yan, J. B. Goodenough, and X. Duan, Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries, Joule, 2, 2091-2104 (2018). https://doi.org/10.1016/j.joule.2018.07.022
- T. Z. Zhuang, J. Q. Huang, H. J. Peng, L. Y. He, X. B. Cheng, C. M. Chen, and Q. Zhang, Rational integration of polypropylene/graphene oxide/nafion as ternarylayered separator to retard the shuttle of polysulfides for lithium-sulfur batteries, Small, 12, 381-389 (2016). https://doi.org/10.1002/smll.201503133
- J. bin Wang, Z. Ren, Y. Hou, X. L. Yan, P. Z. Liu, H. Zhang, H. X. Zhang, and J. J. Guo, A review of graphene synthesisatlow temperatures by CVD methods, New Carbon Mater., 35, 193-208 (2020). https://doi.org/10.1016/S1872-5805(20)60484-X
- E.C. Cengiz, O. Salihoglu, O. Ozturk, C. Kocabas, and R. Demir-Cakan, Ultra-lightweight chemical vapor deposition grown multilayered graphene coatings on paper separator as interlayer in lithium-sulfur batteries, J. Alloys Compd., 777, 1017-1024 (2019). https://doi.org/10.1016/j.jallcom.2018.11.071
- Z. Du, C. Guo, L. Wang, A. Hu, S. Jin, T. Zhang, H. Jin, Z. Qi, S. Xin, X. Kong, Y. G. Guo, H. Ji, and L. J. Wan, Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries, ACS Appl. Mater. Interfaces, 9, 43696-43703 (2017). https://doi.org/10.1021/acsami.7b14195
- Y. S. Jung, A. S. Cavanagh, L. Gedvilas, N. E. Widjonarko, I. D. Scott, S. H. Lee, G. H. Kim, S. M. George, and A. C. Dillon, Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes, Adv. Energy Mater., 2, 1022-1027 (2012). https://doi.org/10.1002/aenm.201100750
- A. C. Dillon, A. W. Ott, J. D. Way, and S. M. George, Surface chemistry of Al2O3 deposition using Al(CH3)3 and H2O in a binary reaction sequence, Surface Sci., 322, 230-242 (1995). https://doi.org/10.1016/0039-6028(94)00578-8
- H. Chen, Q. Lin, Q. Xu, Y. Yang, Z. Shao, and Y. Wang, Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries, J. Membr. Sci., 458, 217-224 (2014). https://doi.org/10.1016/j.memsci.2014.02.004
- F. Chen, H. Yang, X. Liu, D. Chen, X. Xiao, K. Liu, J. Li, F. Cheng, B. Dong, Y. Zhou, Z. Guo, Y. Qin, S. Wang, and W. Xu, Facile fabrication of multifunctional hybrid silk fabrics with controllable surface wettability and laundering durability, ACS Appl. Mater. Interfaces, 8, 5653-5660 (2016). https://doi.org/10.1021/acsami.5b11420
- J. Moon, J. Y. Jeong, J. I. Kim, S. Kim, and J. H. Park, An ultrathin inorganic-organic hybrid layer on commercial polymer separators for advanced lithium-ion batteries, J. Power Sources, 416, 89-94 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.075
- J. W. Lee, A. M. Soomro, M. Waqas, M. A. U. Khalid, and K. H. Choi, A highly efficient surface modified separator fabricated with atmospheric atomic layer deposition for high temperature lithium ion batteries, Int. J. Energy Res., 44(8), 7035-7046 (2020). https://doi.org/10.1002/er.5371
- C. H. Chao, C. te Hsieh, W. J. Ke, L. W. Lee, Y. F. Lin, H. W. Liu, S. Gu, C. C. Fu, R. S. Juang, B. C. Mallick, Y. A. Gandomi, and C. Y. Su, Roll-to-roll atomic layer deposition of titania coating on polymeric separators for lithium ion batteries, J. Power Sources, 482, 228896 (2021). https://doi.org/10.1016/j.jpowsour.2020.228896
- C. Yang, K. Fu, Y. Zhang, E. Hitz, L. Hu, C. Yang, K. Fu, Y. Zhang, E. Hitz, and L. Hu, Protected lithium-metal anodes in batteries: From liquid to solid, Adv. Mater., 29, 1701169 (2017). https://doi.org/10.1002/adma.201701169
- Z. Liu, Y. Jiang, Q. Hu, S. Guo, L. Yu, Q. Li, Q. Liu, and X. Hu, Safer lithium-ion batteries from the separator aspect: Development and future perspectives, Energy Environ. Mater., 4, 336-362 (2021). https://doi.org/10.1002/eem2.12129
- W. Wang, Y. Yuan, J. Wang, Y. Zhang, C. Liao, X. Mu, H. Sheng, Y. Kan, L. Song, and Y. Hu, Enhanced electrochemical and safety performance of lithium metal batteries enabled by the atom layer deposition on PVDFHFP separator, ACS Appl. Energy Mater., 2, 4167-4174 (2019). https://doi.org/10.1021/acsaem.9b00383
- J. A. Oke, Atomic layer deposition and other thin film deposition techniques: from principles to film properties, J. Mater. Res. Technol., 21, 2481-2514 (2022). https://doi.org/10.1016/j.jmrt.2022.10.064
- T. Lee, W. K. Kim, Y. Lee, M. H. Ryou, and Y. M. Lee, Effect of Al2O3 coatings prepared by RF sputtering on polyethylene separators for high-power lithium ion batteries, Macromol. Res., 22, 1190-1195 (2014). https://doi.org/10.1007/s13233-014-2163-1
- P. Cools, L. Astoreca, P. S. E. Tabaei, M. Thukkaram, H. D. Smet, R. Morent, and N. D. Geyter, Surface treatment of polymers by plasma, Surface modification of polymers: Methods and applications, 31-65 (2019).
- T. Lee, Y. Lee, M. H. Ryou, and Y. M. Lee, A facile approach to prepare biomimetic composite separators toward safety-enhanced lithium secondary batteries, RSC Adv., 5, 39392-39398 (2015). https://doi.org/10.1039/C5RA01061F
- S. J. Moss, A. M. Jolly, and B. J. Tighe, Plasma oxidation of polymers, Plasma Chem. Plasma Process., 6, 401-416 (1986). https://doi.org/10.1007/BF00565552
- R. M. France and R. D. Short, Plasma treatment of polymers: The effects of energy transfer from an argon plasma on the surface chemistry of polystyrene, and polypropylene. A high-energy resolution X-ray photoelectron spectroscopy study, Langmuir, 14, 4827-4835 (1998). https://doi.org/10.1021/la9713053
- R. M. France and R. D. Short, Plasma treatment of polymers effects of energy transfer from an argon plasma on the surface chemistry of poly(styrene), low density poly(ethylene), poly(propylene) and poly(ethylene terephthalate), J. Chem. Soc., Faraday Trans., 93, 3173-3178 (1997). https://doi.org/10.1039/a702311a
- K. Peng, B. Wang, Y. Li, and C. Ji, Magnetron sputtering deposition of TiO2 particles on polypropylene separators for lithium-ion batteries, RSC Adv., 5, 81468-81473 (2015). https://doi.org/10.1039/C5RA18171B
- S. Wu, J. Ning, F. Jiang, J. Shi, and F. Huang, Ceramic nanoparticle-decorated melt-electrospun PVDF nanofiber membrane with enhanced performance as a lithium-ion battery separator, ACS Omega, 4, 16309-16317 (2019). https://doi.org/10.1021/acsomega.9b01541
- A. Gogia, Y. Wang, A. K. Rai, R. Bhattacharya, G. Subramanyam, and J. Kumar, Binder-free, thin-film ceramic-coated separators for improved safety of lithiumion batteries, ACS Omega, 6, 4204-4211 (2021). https://doi.org/10.1021/acsomega.0c05037
- H. Lee, X. Ren, C. Niu, L. Yu, M. H. Engelhard, I. Cho, M.-H. Ryou, H. Soo Jin, H.-T. Kim, J. Liu, W. Xu, J.-G. Zhang, H. Lee, X. Ren, C. Niu, L. Yu, J. Liu, W. Xu, J. Zhang, M. H. Engelhard, I. Cho, M. Ryou, H. S. Jin, and H. Kim, Suppressing lithium dendrite growth by metallic coating on a separator, Adv. Funct. Mater., 27, 1704391 (2017). https://doi.org/10.1002/adfm.201704391
- K. Wen, L. Liu, S. Chen, and S. Zhang, A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator, RSC Adv., 8, 13034-13039 (2018). https://doi.org/10.1039/C8RA02140F
- M. M. U. Din and R. Murugan, Metal coated polypropylene separator with enhanced surface wettability for high capacity lithium metal batteries, Sci. Rep., 9, 1-12 (2019). https://doi.org/10.1038/s41598-018-37186-2
- Z. Li, M. Peng, X. Zhou, K. Shin, S. Tunmee, X. Zhang, C. Xie, H. Saitoh, Y. Zheng, Z. Zhou, Y. Tang, Z. Li, M. Peng, X. Zhou, K. Shin, X. Zhang, C. Xie, Y. Zheng, Y. Tang, Z. Zhou, and S. Tunmee, In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes, Adv. Mater., 33, 2100793 (2021). https://doi.org/10.1002/adma.202100793
- Y. Liu, S. Xiong, J. Wang, X. Jiao, S. Li, C. Zhang, Z. Song, and J. Song, Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites, Energy Storage Mater., 19, 24-30 (2019). https://doi.org/10.1016/j.ensm.2018.10.015
- S. H. Choi, S. J. Lee, D. J. Yoo, J. H. Park, J. H. Park, Y. N. Ko, J. Park, Y.-E. Sung, S.-Y. Chung, H. Kim, and J. W. Choi, Marginal magnesium doping for highperformance lithium metal batteries, Adv. Energy Mater., 9(41), 1902278 (2019). https://doi.org/10.1002/aenm.201902278
- K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, and Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10