DOI QR코드

DOI QR Code

A Review on Ultrathin Ceramic-Coated Separators for Lithium Secondary Batteries using Deposition Processes

증착 기법을 이용한 리튬이차전지용 초박막 세라믹 코팅 분리막 기술

  • Kim, Ucheol (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Roh, Youngjoon (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Choi, Seungyeop (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Dzakpasu, Cyril Bubu (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Lee, Yong Min (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • 김우철 (대구경북과학기술원 에너지공학과) ;
  • 노영준 (대구경북과학기술원 에너지공학과) ;
  • 최승엽 (대구경북과학기술원 에너지공학과) ;
  • ;
  • 이용민 (대구경북과학기술원 에너지공학과)
  • Received : 2022.09.06
  • Accepted : 2022.11.17
  • Published : 2022.11.30

Abstract

Regardless of a trade-off relationship between energy density and safety, it is essential to improve both properties for future lithium secondary batteries. Especially, to improve the energy density of batteries further, not only thickness but also weight of separators including ceramic coating layers should be reduced continuously apart from the development of high-capacity electrode active materials. For this purpose, an attempt to replace conventional slurry coating methods with a deposition one has attracted much attention for securing comparable thermal stability while minimizing the thickness and weight of ceramic coating layer in the separator. This review introduces state-of-the-art technology on ceramic-coated separators (CCSs) manufactured by the deposition method. There are three representative processes to form a ceramic coating layer as follows: chemical vapor deposition (CVD), atomic layer deposition (ALD), and physical vapor deposition (PVD). Herein, we summarized the principle and advantages/disadvantages of each deposition method. Furthermore, each CCS was analyzed and compared in terms of its mechanical and thermal properties, air permeability, ionic conductivity, and electrochemical performance.

리튬이온전지의 에너지밀도가 지속적으로 높아지고 사용환경이 가혹해지고 있지만, 전지의 안전성은 타협할 수 있는 특성이 아니다. 특히, 더 높은 에너지밀도 확보를 위해 고용량 전극 소재 개발과 함께 분리막 원단 뿐만 아니라 세라믹 코팅층의 두께 및 무게의 박막화와 경량화가 동시에 요구되고 있다. 그 중, 기존 슬러리 코팅 방식을 증착 방식으로 대체하는 기술이 주목받고 있으며, 분리막의 내열성 확보를 위해 도입된 수 ㎛ 수준의 세라믹 코팅층을 nm 수준으로 박막/경량화 하면서도 동등의 내열성을 확보하는 시도가 진행되고 있다. 증착법으로 제조된 세라믹 코팅 분리막은 리튬이온전지 에너지밀도를 크게 증가시킬 수 있는 효율적인 방법이지만, 균일한 물성의 세라믹 코팅 분리막을 제작하기 위해서는 증착 공정 중 온도를 제어해야 하며, 생산속도와 공정비용을 기존 슬러리 코팅 수준으로 떨어뜨려야 하는 현실적 문제가 존재한다. 그럼에도 불구하고, 분리막 원단 대비 두께 및 무게 증가가 거의 없다는 점에서는 전지의 고에너지밀도 달성에 필요한 매력적인 접근법임은 분명하다. 본 총설에서는 세라믹 증착 코팅에 사용되고 있는 세 가지 방법인 1) 화학적 기상 증착법, 2) 원자층 증착법, 그리고 3) 물리적 기상 증착법으로 제조된 세라믹 코팅 분리막을 소개하고자 한다. 각 증착법의 원리와 장/단점을 설명하고, 제조된 세라믹 코팅 분리막의 물리적, 전기화학적 특성 및 전지의 성능 변화를 비교 분석하였다. 또한, 소재 관점에서 금속 또는 유기물질이 코팅된 초박막 코팅 분리막의 기술 동향도 소개하였다.

Keywords

Acknowledgement

본 연구는 현대기아자동차와 현대 NGV의 연구비 지원을 받아 수행되었음을 밝히며 이에 감사드립니다.

References

  1. P. Arora and Z. Zhang, Battery separators, Chem. Rev., 104, 4419-4462 (2004). https://doi.org/10.1021/cr020738u
  2. H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci., 7, 3857-3886 (2014). https://doi.org/10.1039/C4EE01432D
  3. T. Nestler, R. Schmid, W. Munchgesang, V. Bazhenov, J. Schilm, T. Leisegang, and D. C. Meyer, Separators - Technology review: Ceramic based separators for secondary batteries, AIP Conference Proceedings, 1597, 155 (2014).
  4. H.-S. Jeong, D. W. Kim, Y. U. Jeong, and S.-Y. Lee, Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoridehexafluoropropylene)-based ceramic composite separators for lithium-ion batteries, J. Power Sources, 195(18), 6116-6121 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.085
  5. M. Kim, Y.-C. Nho, and J. H. Park, Electrochemical performances of inorganic membrane coated electrodes for Li-ion batteries, J. Solid State Electrochem., 14, 769-773 (2010). https://doi.org/10.1007/s10008-009-0851-0
  6. S.-Y. Lee, D.-J. Seo, J.-Y. Sohn, S.-K. Kim, J.-H. Hong, Y.-S. Kim, and H.-M. Jang, Organic/inorganic composite separator having morphology gradient, manufacturing method thereof and electrochemical device containing the same, US Patents 7, 638, 241 (2022).
  7. S.-K Kim, J.-Y Sohn, J.-H Park, H.-M Jang, B.-J Shin, S.-Y Lee, and J.-H Hong, Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same, US Patents 7, 709, 152 (2022).
  8. G. Horpel, V Hennige, C. Hying, S. Augustin, and C. Jost, Use of a ceramic separator in lithium ion batteries, comprising an electrolyte containing ionic fluids, US Patents 9, 214, 659 (2022).
  9. D. Yeon, Y. Lee, M. H. Ryou, and Y. M. Lee, New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries, Electrochim. Acta, 157, 282-289 (2015). https://doi.org/10.1016/j.electacta.2015.01.078
  10. D. H. Han, M. Zhang, P. X. Lu, Y. L. Wan, Q. L. Chen, H. Y. Niu, and Z. W. Yu, A multifunctional separator with Mg(OH)2 nanoflake coatings for safe lithium-metal batteries, J. Energy Chem., 52, 75-83 (2021). https://doi.org/10.1016/j.jechem.2020.04.043
  11. B. Jung, B. Lee, Y. C. Jeong, J. Lee, S. R. Yang, H. Kim, and M. Park, Thermally stable non-aqueous ceramiccoated separators with enhanced nail penetration performance, J. Power Sources, 427, 271-282 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.046
  12. Y. Lee, H. Lee, T. Lee, M. H. Ryou, and Y. M. Lee, Synergistic thermal stabilization of ceramic/co-polyimide coated polypropylene separators for lithium-ion batteries, J. Power Sources, 294, 537-544 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.106
  13. Q. Liu, M. Xia, J. Chen, Y. Tao, Y. Wang, K. Liu, M. Li, W. Wang, and D. Wang, High performance hybrid Al2O3/poly(vinyl alcohol-co-ethylene) nanofibrous membrane for lithium-ion battery separator, Electrochim. Acta, 176, 949-955 (2015). https://doi.org/10.1016/j.electacta.2015.07.104
  14. J. H. Park, W. Park, J. H. Kim, D. Ryoo, H. S. Kim, Y. U. Jeong, D. W. Kim, and S. Y. Lee, Close-packed poly(methyl methacrylate) nanoparticle arrays-coated polyethylene separators for high-power lithium-ion polymer batteries, J. Power Sources, 196, 7035-7038(2011). https://doi.org/10.1016/j.jpowsour.2010.09.102
  15. Y. Roh, U. Kim, and Y.-M. Lee, Physical and electrochemical properties of ceramic-coated separators with different ceramic types for lithium-ion batteries, J. Korean Battery Soc., 1, 106-112 (2021). https://doi.org/10.53619/KOBS.2021.12.1.2.106
  16. Y. Roh, D. Jin, E. Kim, S. Byun, Y. S. Lee, M. H. Ryou, and Y. M. Lee, Highly improved thermal stability of the ceramic coating layer on the polyethylene separator via chemical crosslinking between ceramic particles and polymeric binders, Chem. Eng. J., 433, 134501 (2022). https://doi.org/10.1016/j.cej.2022.134501
  17. H. Jeon, Y. Roh, D. Jin, M. H. Ryou, Y. C. Jeong, and Y. M. Lee, Crosslinkable polyhedral silsesquioxane-based ceramic-coated separators for Li-ion batteries, J. Indust. Eng. Chem., 71, 277-283 (2019). https://doi.org/10.1016/j.jiec.2018.11.036
  18. A. Yanguas-Gil, Growth and transport in nanostructured materials: Reactive transportation in PVD, CVD, and ALD, Springer (2016).
  19. G. L. Doll, B. A. Mensah, H. Mohseni, and T. W. Scharf, Chemical vapor deposition and atomic layer deposition of coatings for mechanical applications, J. Thermal Spray Technol., 19, 510-516 (2010). https://doi.org/10.1007/s11666-009-9364-8
  20. S. Li, S. Wang, D. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golverg, and G. Eda, Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals, Appl. Mater. Today, 1, 60-66 (2015). https://doi.org/10.1016/j.apmt.2015.09.001
  21. Y. Qi, B. Deng, X. Guo, S. Chen, J. Gao, T. Li, Z. Dou, H. Ci, J. Sun, Z. Chen, R. Wang, L. Cui, X. Chen, K. Chen, H. Wang, S. Wang, P. Gao, M. H. Rummeli, H. Peng, Y. Zhang, and Z. Liu, Switching vertical to horizontal graphene growth using faraday cage-assisted PECVD approach for high-performance transparent heating device, Adv. Mater., 30(8), 1704839 (2018). https://doi.org/10.1002/adma.201704839
  22. D. BARRECA, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, A. Pozza, and E. Tondello, CVD Co3O4 nanopyramids: a nano-platform for photo-assisted H2 production, Chem. Vap. Depos., 16(10-12), 296-300 (2010). https://doi.org/10.1002/cvde.201004289
  23. P. M. Sousa, A. J. Silvestre, N. Popovici, and O. Conde, Morphological and structural characterization of CrO2/Cr2O3 films grown by Laser-CVD, Appl. Surf. Sci., 247, 423-428 (2005). https://doi.org/10.1016/j.apsusc.2005.01.061
  24. K. Chan and K. K. Gleason, Initiated CVD of poly (methyl methacrylate) thin films, Chem. Vap. Depos., 11(10), 437-443 (2005). https://doi.org/10.1002/cvde.200506381
  25. K. L. Choy, Chemical vapour deposition of coatings, Prog. Mater. Sci., 48(2), 57-170 (2003). https://doi.org/10.1016/S0079-6425(01)00009-3
  26. S. M. George, Atomic layer deposition: An overview, Chem. Rev., 110(1), 111-131 (2010). https://doi.org/10.1021/cr900056b
  27. R. L. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/ water process, J. Appl. Phys., 97, 121301 (2005). https://doi.org/10.1063/1.1940727
  28. S. M. George, A. W. Ott, and J. W. Klaus, Surface chemistry for atomic layer growth, J. Phys. Chem., 100(31), 13121-13131 (1996). https://doi.org/10.1021/jp9536763
  29. D. M. Mattox, Physical vapor deposition (PVD) processes, Met. Finish., 97, 1 (2000).
  30. H. Adachi and K. Wasa, Handbook of sputtering technology, 2nd ed., 3-39, Elsevier (2012).
  31. A. Baptista, F. Silva, J. Porteiro, J. Miguez, and G. Pinto, Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands, Coatings, 8(11), 402 (2018). https://doi.org/10.3390/coatings8110402
  32. J. Greener, G. Plearson, and M. Cakmak (eds.), Roll-toroll manufacturing: Process elements and recent advances, John Wiley & Sons (2018).
  33. Y. Lin and X. Chen (eds.), Advanced nano deposition methods, John Wiley & Sons (2016).
  34. H. Conrads and M. Schmidt, Plasma generation and plasma sources, Plasma Sources Sci. Technol., 9, 441 (2000). https://doi.org/10.1088/0963-0252/9/4/301
  35. R. Behrisch and W. Eckstein (eds.), Sputtering by particle bombardment: Experiments and computer calculations from threshold to MeV energies, Springer Science & Business Media (2007).
  36. W. D. Westwood, S. Maniv, and P. J. Scanlon, The current-voltage characteristic of magnetron sputtering systems, J. Appl. Phys., 54, 6841 (1983). https://doi.org/10.1063/1.332006
  37. M. B. Assouar, O. Elmazria, L. le Brizoual, and P. Alnot, Reactive DC magnetron sputtering of aluminum nitride films for surface acoustic wave devices, Diam. Relat. Mater., 11(3-6), 413-417 (2002). https://doi.org/10.1016/S0925-9635(01)00708-7
  38. M. H. Suhail, G. M. Rao, and S. Mohan, dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films, J. Appl. Phys., 71, 1421 (1998).
  39. W. A. Pliskin, Comparison of properties of dielectric films deposited by various methods, J. Vac. Sci. Technol., 14, 1064 (1977). https://doi.org/10.1116/1.569413
  40. S. Chowdhury, M. T. Laugier, and I. Z. Rahman, Effect of target self-bias voltage on the mechanical properties of diamond-like carbon films deposited by RF magnetron sputtering, Thin Solid Films, 468(1-2), 149-154 (2004). https://doi.org/10.1016/j.tsf.2004.04.006
  41. M. Mieno and T. Yoshida, Preparation of cubic boron nitride films by RF sputtering, Jpn. J. Appl. Phys., 29, 1175-1177 (1990).
  42. R. Boulmani, M. Bendahan, C. Lambert-Mauriat, M. Gillet, and K. Aguir, Correlation between rf-sputtering parameters and WO3 sensor response towards ozone, Sens. Actuators B Chem., 125, 622-627 (2007). https://doi.org/10.1016/j.snb.2007.03.011
  43. P. J. Kelly and R. D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, 56, 159-172 (2000). https://doi.org/10.1016/S0042-207X(99)00189-X
  44. S. Swann, Magnetron sputtering, Phys. Technol., 19, 67 (1988). https://doi.org/10.1088/0305-4624/19/2/304
  45. S. Ido, M. Kashiwagi, and M. Takahashi, Computational studies of plasma generation and control in a magnetron sputtering system, Jpn. J. Appl. Phys., 38, 4450 (1999). https://doi.org/10.1143/JJAP.38.4450
  46. Zheng, B., Fu, Y., Wang, K., Schuelke, T., & Fan, Q. H, Electron dynamics in radio frequency magnetron sputtering argon discharges with a dielectric target, Plasma Sources Science and Technology, 30, (2021).
  47. J. A. Thornton, Magnetron sputtering: basic physics and application to cylindrical magnetrons, J. Vac. Sci. Technol., 15, 171 (1998). https://doi.org/10.1116/1.569448
  48. R. D. Arnell and P. J. Kelly, Recent advances in magnetron sputtering, Surf. Coat. Technol., 112(1-3), 170-176 (1999). https://doi.org/10.1016/S0257-8972(98)00749-X
  49. G. Brauer, B. Szyszka, M. Vergohl, and R. Bandorf, Magnetron sputtering - milestones of 30 years, Vacuum, 84(12), 1354-1359 (2010). https://doi.org/10.1016/j.vacuum.2009.12.014
  50. M.V. Castro, C.J. Tavares, Dependence of Ga-doped ZnO thin film properties on different sputtering process parameters: Substrate temperature, sputtering pressure and bias voltage, Thin Solid Films, 586, 13-21 (2015). https://doi.org/10.1016/j.tsf.2015.04.036
  51. S. Lobe, A. Bauer, S. Uhlenbruck, and D. FattakhovaRohlfing, Physical vapor deposition in solid-state battery development: From materials to devices, Adv. Sci., 8(11), 2002044 (2021). https://doi.org/10.1002/advs.202002044
  52. M. Kim and J. H. Park, Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery, J. Power Sources, 212, 22-27 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.038
  53. Y. Yoo, B. G. Kim, K. Pak, S. J. Han, H. S. Song, J. W. Choi, and S. G. Im, Initiated chemical vapor deposition (iCVD) of highly cross-linked polymer films for advanced lithium-ion battery separators, ACS Appl. Mater. Interfaces, 7, 18849-18855 (2015). https://doi.org/10.1021/acsami.5b05720
  54. T. Lei, W. Chen, W. Lv, J. Huang, J. Zhu, J. Chu, C. Yan, C. Wu, Y. Yan, W. He, J. Xiong, Y. Li, C. Yan, J. B. Goodenough, and X. Duan, Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries, Joule, 2, 2091-2104 (2018). https://doi.org/10.1016/j.joule.2018.07.022
  55. T. Z. Zhuang, J. Q. Huang, H. J. Peng, L. Y. He, X. B. Cheng, C. M. Chen, and Q. Zhang, Rational integration of polypropylene/graphene oxide/nafion as ternarylayered separator to retard the shuttle of polysulfides for lithium-sulfur batteries, Small, 12, 381-389 (2016). https://doi.org/10.1002/smll.201503133
  56. J. bin Wang, Z. Ren, Y. Hou, X. L. Yan, P. Z. Liu, H. Zhang, H. X. Zhang, and J. J. Guo, A review of graphene synthesisatlow temperatures by CVD methods, New Carbon Mater., 35, 193-208 (2020). https://doi.org/10.1016/S1872-5805(20)60484-X
  57. E.C. Cengiz, O. Salihoglu, O. Ozturk, C. Kocabas, and R. Demir-Cakan, Ultra-lightweight chemical vapor deposition grown multilayered graphene coatings on paper separator as interlayer in lithium-sulfur batteries, J. Alloys Compd., 777, 1017-1024 (2019). https://doi.org/10.1016/j.jallcom.2018.11.071
  58. Z. Du, C. Guo, L. Wang, A. Hu, S. Jin, T. Zhang, H. Jin, Z. Qi, S. Xin, X. Kong, Y. G. Guo, H. Ji, and L. J. Wan, Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries, ACS Appl. Mater. Interfaces, 9, 43696-43703 (2017). https://doi.org/10.1021/acsami.7b14195
  59. Y. S. Jung, A. S. Cavanagh, L. Gedvilas, N. E. Widjonarko, I. D. Scott, S. H. Lee, G. H. Kim, S. M. George, and A. C. Dillon, Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes, Adv. Energy Mater., 2, 1022-1027 (2012). https://doi.org/10.1002/aenm.201100750
  60. A. C. Dillon, A. W. Ott, J. D. Way, and S. M. George, Surface chemistry of Al2O3 deposition using Al(CH3)3 and H2O in a binary reaction sequence, Surface Sci., 322, 230-242 (1995). https://doi.org/10.1016/0039-6028(94)00578-8
  61. H. Chen, Q. Lin, Q. Xu, Y. Yang, Z. Shao, and Y. Wang, Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries, J. Membr. Sci., 458, 217-224 (2014). https://doi.org/10.1016/j.memsci.2014.02.004
  62. F. Chen, H. Yang, X. Liu, D. Chen, X. Xiao, K. Liu, J. Li, F. Cheng, B. Dong, Y. Zhou, Z. Guo, Y. Qin, S. Wang, and W. Xu, Facile fabrication of multifunctional hybrid silk fabrics with controllable surface wettability and laundering durability, ACS Appl. Mater. Interfaces, 8, 5653-5660 (2016). https://doi.org/10.1021/acsami.5b11420
  63. J. Moon, J. Y. Jeong, J. I. Kim, S. Kim, and J. H. Park, An ultrathin inorganic-organic hybrid layer on commercial polymer separators for advanced lithium-ion batteries, J. Power Sources, 416, 89-94 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.075
  64. J. W. Lee, A. M. Soomro, M. Waqas, M. A. U. Khalid, and K. H. Choi, A highly efficient surface modified separator fabricated with atmospheric atomic layer deposition for high temperature lithium ion batteries, Int. J. Energy Res., 44(8), 7035-7046 (2020). https://doi.org/10.1002/er.5371
  65. C. H. Chao, C. te Hsieh, W. J. Ke, L. W. Lee, Y. F. Lin, H. W. Liu, S. Gu, C. C. Fu, R. S. Juang, B. C. Mallick, Y. A. Gandomi, and C. Y. Su, Roll-to-roll atomic layer deposition of titania coating on polymeric separators for lithium ion batteries, J. Power Sources, 482, 228896 (2021). https://doi.org/10.1016/j.jpowsour.2020.228896
  66. C. Yang, K. Fu, Y. Zhang, E. Hitz, L. Hu, C. Yang, K. Fu, Y. Zhang, E. Hitz, and L. Hu, Protected lithium-metal anodes in batteries: From liquid to solid, Adv. Mater., 29, 1701169 (2017). https://doi.org/10.1002/adma.201701169
  67. Z. Liu, Y. Jiang, Q. Hu, S. Guo, L. Yu, Q. Li, Q. Liu, and X. Hu, Safer lithium-ion batteries from the separator aspect: Development and future perspectives, Energy Environ. Mater., 4, 336-362 (2021). https://doi.org/10.1002/eem2.12129
  68. W. Wang, Y. Yuan, J. Wang, Y. Zhang, C. Liao, X. Mu, H. Sheng, Y. Kan, L. Song, and Y. Hu, Enhanced electrochemical and safety performance of lithium metal batteries enabled by the atom layer deposition on PVDFHFP separator, ACS Appl. Energy Mater., 2, 4167-4174 (2019). https://doi.org/10.1021/acsaem.9b00383
  69. J. A. Oke, Atomic layer deposition and other thin film deposition techniques: from principles to film properties, J. Mater. Res. Technol., 21, 2481-2514 (2022). https://doi.org/10.1016/j.jmrt.2022.10.064
  70. T. Lee, W. K. Kim, Y. Lee, M. H. Ryou, and Y. M. Lee, Effect of Al2O3 coatings prepared by RF sputtering on polyethylene separators for high-power lithium ion batteries, Macromol. Res., 22, 1190-1195 (2014). https://doi.org/10.1007/s13233-014-2163-1
  71. P. Cools, L. Astoreca, P. S. E. Tabaei, M. Thukkaram, H. D. Smet, R. Morent, and N. D. Geyter, Surface treatment of polymers by plasma, Surface modification of polymers: Methods and applications, 31-65 (2019).
  72. T. Lee, Y. Lee, M. H. Ryou, and Y. M. Lee, A facile approach to prepare biomimetic composite separators toward safety-enhanced lithium secondary batteries, RSC Adv., 5, 39392-39398 (2015). https://doi.org/10.1039/C5RA01061F
  73. S. J. Moss, A. M. Jolly, and B. J. Tighe, Plasma oxidation of polymers, Plasma Chem. Plasma Process., 6, 401-416 (1986). https://doi.org/10.1007/BF00565552
  74. R. M. France and R. D. Short, Plasma treatment of polymers: The effects of energy transfer from an argon plasma on the surface chemistry of polystyrene, and polypropylene. A high-energy resolution X-ray photoelectron spectroscopy study, Langmuir, 14, 4827-4835 (1998). https://doi.org/10.1021/la9713053
  75. R. M. France and R. D. Short, Plasma treatment of polymers effects of energy transfer from an argon plasma on the surface chemistry of poly(styrene), low density poly(ethylene), poly(propylene) and poly(ethylene terephthalate), J. Chem. Soc., Faraday Trans., 93, 3173-3178 (1997). https://doi.org/10.1039/a702311a
  76. K. Peng, B. Wang, Y. Li, and C. Ji, Magnetron sputtering deposition of TiO2 particles on polypropylene separators for lithium-ion batteries, RSC Adv., 5, 81468-81473 (2015). https://doi.org/10.1039/C5RA18171B
  77. S. Wu, J. Ning, F. Jiang, J. Shi, and F. Huang, Ceramic nanoparticle-decorated melt-electrospun PVDF nanofiber membrane with enhanced performance as a lithium-ion battery separator, ACS Omega, 4, 16309-16317 (2019). https://doi.org/10.1021/acsomega.9b01541
  78. A. Gogia, Y. Wang, A. K. Rai, R. Bhattacharya, G. Subramanyam, and J. Kumar, Binder-free, thin-film ceramic-coated separators for improved safety of lithiumion batteries, ACS Omega, 6, 4204-4211 (2021). https://doi.org/10.1021/acsomega.0c05037
  79. H. Lee, X. Ren, C. Niu, L. Yu, M. H. Engelhard, I. Cho, M.-H. Ryou, H. Soo Jin, H.-T. Kim, J. Liu, W. Xu, J.-G. Zhang, H. Lee, X. Ren, C. Niu, L. Yu, J. Liu, W. Xu, J. Zhang, M. H. Engelhard, I. Cho, M. Ryou, H. S. Jin, and H. Kim, Suppressing lithium dendrite growth by metallic coating on a separator, Adv. Funct. Mater., 27, 1704391 (2017). https://doi.org/10.1002/adfm.201704391
  80. K. Wen, L. Liu, S. Chen, and S. Zhang, A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator, RSC Adv., 8, 13034-13039 (2018). https://doi.org/10.1039/C8RA02140F
  81. M. M. U. Din and R. Murugan, Metal coated polypropylene separator with enhanced surface wettability for high capacity lithium metal batteries, Sci. Rep., 9, 1-12 (2019). https://doi.org/10.1038/s41598-018-37186-2
  82. Z. Li, M. Peng, X. Zhou, K. Shin, S. Tunmee, X. Zhang, C. Xie, H. Saitoh, Y. Zheng, Z. Zhou, Y. Tang, Z. Li, M. Peng, X. Zhou, K. Shin, X. Zhang, C. Xie, Y. Zheng, Y. Tang, Z. Zhou, and S. Tunmee, In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes, Adv. Mater., 33, 2100793 (2021). https://doi.org/10.1002/adma.202100793
  83. Y. Liu, S. Xiong, J. Wang, X. Jiao, S. Li, C. Zhang, Z. Song, and J. Song, Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites, Energy Storage Mater., 19, 24-30 (2019). https://doi.org/10.1016/j.ensm.2018.10.015
  84. S. H. Choi, S. J. Lee, D. J. Yoo, J. H. Park, J. H. Park, Y. N. Ko, J. Park, Y.-E. Sung, S.-Y. Chung, H. Kim, and J. W. Choi, Marginal magnesium doping for highperformance lithium metal batteries, Adv. Energy Mater., 9(41), 1902278 (2019). https://doi.org/10.1002/aenm.201902278
  85. K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, and Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10