DOI QR코드

DOI QR Code

Anti-inflammatory Activity of Cynanchi Atrati Radix Et Rhizoma Water Extracts via Regulation of MAPK in LPS-induced Murine Macrophage Cell Line, RAW 264.7

LPS로 유도된 마우스 대식세포주인 RAW264.7에서 MAPK 조절에 의한 백미 물추출물의 항염증 활성

  • Lee, Sang-Ho (Nutrex Technology Co., Ltd.) ;
  • Yoo, Ji-Hyun (Department of Herbal Health & Pharmacy, Joongbu University) ;
  • Kil, Ki-Jung (Department of Herbal Health & Pharmacy, Joongbu University)
  • 이상호 ((주)뉴트렉스테크놀러지) ;
  • 유지현 (중부대학교 한방보건제약학과) ;
  • 길기정 (중부대학교 한방보건제약학과)
  • Received : 2022.10.12
  • Accepted : 2022.11.25
  • Published : 2022.11.30

Abstract

Objectives : To develop natural ingredients that help prevent or treat anti-inflammatory-related diseases and use themas basic data, we investigated anti-inflammatory activity of Cynanchi Atrati Radix Et Rhizoma water extracts(CWE) in lipopolysaccharide(LPS)-induced murine macrophage cell line, RAW 264.7 cells. Methods : The cell viabilities were evaluated with RAW 264.7 cells. The production of nitric oxide(NO), prostaglandin E2(PGE2), pro-inflammatory cytokines such tumor necrotic factor(TNF)-α and interleukin(IL)-6 were assessed in LPS-induced RAW 264.7 cell treated with CWE. Furthermore, the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2(COX-2), and mitogen-activated protein kinase(MAPK) were assessed by western blotting. Results : In RAW 264.7 cell, the cell viability by CWE treatment was more than 98.4% at a concentration of 100-400 ㎍/mL. At a concentration of 800 ug/ml of CWE, the cell viability was as low as 86%. At doses of 100, 200 and 400 ㎍/mL, CWE inhibited the production of NO, PGE2, TNF-𝛼 and IL-6 in a dose-dependent manner and also decreased the expression of iNOS and COX-2 from LPS-induced RAW 264.7 cells. In addition, CWE significantly inhibited the MAPK pathway including decreased the phosphorylation of the p38, c-Jun N-terminal kinase(JNK) and extracellular signal-regulated kinase(ERK1/2). Conclusions : Our study provides evidence that CWE inhibits the production of main pro-inflammatory molecules in LPS-induced RAW 264.7 cells via expression of p38, JNK, and ERK1/2 MAPK signaling pathways. Therefore, CWE is expected to be widely used as a natural ingredient for anti-inflammatory functional foods or pharmaceuticals in the future.

Keywords

References

  1. National Institute of Biological Resources. National Institute of Biological Information Management System. 2016.
  2. Park JH. Encyclopedia of Herbal Medicine.(volume one). Seoul : Shinilbooks. 2002 ; 312.
  3. Park MG. Park JU, Yang SW, Kim JJ. Preservative composition comprising Cynanchum atratum Bunge extract as active ingredient and method of manufacturing the same. Seoul : AJ Co., Ltd. 2017 ; 10-2017-0029518.
  4. Yuan Y, Zhang WD, Zhang C, Liu RH and Jin HZ. Studies on chemical constituents from root of Cynanchum atratum. China J. Chin. Mater. Med. 2007 ; 32 : 1895-8.
  5. Jin Q, Han XH, Yun CY, Lee C, Lee JW, Lee DH, Lee MY, Jung SH, Hong JT, Kim YS and Hwang BY. Melanogenesis inhibitory pregnane glycosides from Cynanchum atratum. Bioorganic & Medicinal Chemistry Letters. 2018 ; 28 : 1252-6. https://doi.org/10.1016/j.bmcl.2018.01.004
  6. Lee KY, Sung SH, and Kim YC. New acetylcholinesterase-inhibitory pregnane glycosides of Cynanchum atratum Roots. Helvetica Chimica Acta. 2003 ; 86 : 474-83. https://doi.org/10.1002/hlca.200390047
  7. Yang J, Wang B, Zhang C, Xu X and Zhang M. A C21-steroidal glycoside from Cynanchum atratumattenuates Concanavalin A-induced liver injury in Mice. Molecules. 2019 ; 24 : 1-13. https://doi.org/10.3390/molecules24010001
  8. Lee KY, Yoon JS, Kim ES, Kang SY and Kim YC. Anti-acetylcholinesterase and anti-amnesic activities of a pregnane glycoside, cynatroside B, from Cynanchum atratum. Planta Medica. 2005 ; 71 : 7-11. https://doi.org/10.1055/s-2005-837743
  9. Hu G, Hong D, Zhang T, Duan H, Wei P, Guo X and Xu X. Cynatratoside-C from Cynanchum atratumdisplays anti-inflammatory effect via suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice. Chemico-Biological Interactions. 2018 ; 279 : 187-95. https://doi.org/10.1016/j.cbi.2017.10.017
  10. Mukudai Y, Kondo S, Koyama T, Li C, Banka S, Kogure A and Shintani S. Potential anti-osteoporotic effects of herbal extracts on osteoclasts, osteoblasts and chondrocytes in vitro. BMC Complementary and Alternative Medicine. 2014 ; 29 : 1-14.
  11. Yan Y, Zhang J, Liu K, Huang T, Yan C, Huang L and Hao X. Seco-pregnane steroidal glycosides from the roots of Cynanchum atratum and their anti-TMV activity. Fitoterapia. 2014 ; 97 : 50-63. https://doi.org/10.1016/j.fitote.2014.03.027
  12. Kim YY, Lee S, Jang HJ, Hur G, Lee SW, Jung KS, Lee SJ, KIM SH and Rho MC. Cynanchum atratum ameliorates airway inflammation via maintaining alveolar barrier and regulating mast cell-mediated inflammatory responses. The American Journal of Chinese Medicine. 2019 ; 47 : 1795-814. https://doi.org/10.1142/s0192415x19500915
  13. Comalada M, Lloberas J and Celada A. MKP-1: a critical phosphatase in the biology of macrophages controlling the switch between proliferation and activation. Eur J Immunol. 2012 ; 8 : 1938-48. https://doi.org/10.1002/eji.201242441
  14. Lu Y, Suh SJ, Kwak CH, Kwon KM, Seo CS, Li Y, Jin Y, Li Xian, Hwang SL, Kwon O, Chang YC, Park YG, Park SS, Son JK, Kim CH and Chang HW. Saucerneol F, a new lignan, inhibits iNOS expression via MAPKs, NF-kappaB and AP-1 inactivation in LPS-induced RAW264.7 cells. Int. Immunopharmacol. 2012 ; 12 : 175-81. https://doi.org/10.1016/j.intimp.2011.11.008
  15. Cheng BCY, Ma XO, Kwan HY, Tse KW, Cao HH, Su T, Shu X, Wu ZZ and Yu ZL. A herbal formula consisting of rosae multiflorae fructus and lonicerae japonicae flos inhibits inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. J. Ethnopharmacol. 2014 ; 153 : 922-7. https://doi.org/10.1016/j.jep.2014.02.029
  16. Nyati KK, Masuda K, Zaman MMU, Dubey PK, Millrine D, Chalise JP, Higa M, Li S, Standley DM, Saito K, Hanieh H and Kishimoto T. TLR4-induced NF-κB and MAPK signaling regulate the IL-6 mRNA stabilizing protein Arid5a. Nucleic Acids. Res. 2017 ; 45 : 2687-703. https://doi.org/10.1093/nar/gkx064
  17. Chan ED and Riches DW. IFN-γ+ LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38mapk in a mouse macrophage cell line. Am. J. Physiol. Cell. Physiol. 2001 ; 280 : C441-50. https://doi.org/10.1152/ajpcell.2001.280.3.C441
  18. Lee YH and Lim EM. Anti-Inflammatory effect of Ligustri lucidi fructus water extract in RAW 264.7 cells induced by LPS. J Korean Obstet Gynecol. 2013 ; 26 : 66-81.
  19. Li J, Zhang H, Huang W, Qian H and Li Y. TNF-alpha inhibitors with anti-oxidative stress activity from natural products. Curr. Top Med. Chem. 2012 ; 12 : 1408-21. https://doi.org/10.2174/156802612801784434
  20. Saw CL, Wu Q, Su ZY, Wang H, Yang Y and Xu X. Effects of natural phytochemicals in Angelica sinensis(Danggui) on Nrf2-mediated gene expression of phase II drug metabolizing enzymes and anti- inflammation. Biopharm. Drug Dispos. 2013 ; 34 : 303-11. https://doi.org/10.1002/bdd.1846
  21. Lodovici M, Guglielmi F, Meoni M and Dolara P. Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem. Toxicol. 2001 ; 39 : 1205-10. https://doi.org/10.1016/S0278-6915(01)00067-9
  22. Iontcheva I, Amar S, Zawawi KH, Kantarci A and Van Dyke TE. Role for moesin in lipopolysaccharidestimulated signal transduction. Infect. Immun. 2004 ; 72 : 2312-20. https://doi.org/10.1128/IAI.72.4.2312-2320.2004
  23. Li Y, Wu Q, Deng Y, Lv H, Qiu J, Chi G and Feng H. D(-)-salicin inhibits the LPS-induced inflammation in RAW264.7 cells and mouse models. Int. Immunopharmacol. 2015 ; 26 : 286-94. https://doi.org/10.1016/j.intimp.2015.04.016
  24. Bosca L, Zeini M, Traves PG and Hortelano S. Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology. 2005 ; 208 : 249-58. https://doi.org/10.1016/j.tox.2004.11.035
  25. Nathan C and Xie QW. Nitric oxide synthases: role, tolls, and control. Cell. 1994 ; 78 : 915-8. https://doi.org/10.1016/0092-8674(94)90266-6
  26. Wei W, Li XY, Zhang HQ and Wu SG. Anti inflammatory and immuno pharmacology. 1sted. Beijing : Renmin weisheng chubanshe. 2004 ; 10-7.
  27. Kim JY and Chol JY. Anti-inflammatory effects of ginseng-derived active principles. The Korean Ginseng Research and Industry. 2007 ; 1 : 17-23.
  28. Park WS. Effect of water extract from artemisiae argi folium on mouse macrophage stimulated by LPS. Kor. J. Herbology. 2009 ; 24 : 151-7.
  29. Yoon SB, Lee YJ, Park SK, Kim HC, Bae H, Kim HM, Ko SG, Choi HY, Oh MS and Park W. Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW 264.7 macrophages. J. Ethnopharmacol. 2009 ; 125 : 286-90. https://doi.org/10.1016/j.jep.2009.06.027
  30. Lee JY, Lee YJ and Park WS. Anti-inflammatory Effects of Fermented Houttuyniae Herba Water Extract on LPS-induced Mouse Macrophage. Kor. J. Herbology. 2010 ; 25 : 27-34 https://doi.org/10.6116/KJH.2010.25.3.027
  31. Sung MS, Kim YH, Choi YM, Ham HM, Jeong HS and Lee JS. Anti-inflammatory effect of Erigeron annuus L. flower extract through heme oxygenase-1 induction in RAW264.7 macrophages. J Korean Soc Food Sci Nutr. 2011 ; 40 : 1507-11. https://doi.org/10.3746/JKFN.2011.40.11.1507
  32. Lee JW. Antiarthritic and anti-inflammatory effects of the mixture of Cinnamon Cortex, Persica Semen and Mirabilite. Kyung Hee University. 2013.
  33. Pang L and Hoult JRS. Repression of inducible nitric oxide synthase and cyclooxygenase-2 by prostaglandin E2 and other cyclic AMP stimulants in J774 macrophages. Biochem P harmacol. 1997 ; 53 : 493-500. https://doi.org/10.1016/S0006-2952(96)00737-X
  34. Hinz B, Kraus V, Pahl A and Brune K. Salicylate metabolites inhibit cyclooxygenase-2 dependent prostaglandin E2 synthesis in murine macrophages. Biochem Biophys Res Commun. 2000 ; 274 : 197-202. https://doi.org/10.1006/bbrc.2000.3123
  35. Nathan C and Xie QW. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994 ; 269 : 13725-8. https://doi.org/10.1016/S0021-9258(17)36703-0
  36. Witthoht T, Eckmann L, Kim JM and Kagnoff MF. 1998. Enteroinvasive bacteria directly activate expression of iNOS and NO production in human colon epithelial cell. Am J Physiol.dlf. 1998 ; 275 : 564-71.
  37. Ryu JH, Ahn H, Kim JY and Kim YK. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS activated macrophages. Phytotherapy Research. 2003 ; 17 : 485-9. https://doi.org/10.1002/ptr.1180
  38. Kranzhofer R, Browatzki M, Schmidt J and Kubler W. Angiotensin II activates the proinflammatory transcription factor nuclear factor-κB in human monocytes. Biochem Biophys Res Commun. 1999 ; 257 : 826-8. https://doi.org/10.1006/bbrc.1999.0543
  39. Robinson MJ and Cobb MH. Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 1997 ; 9 : 180-6. https://doi.org/10.1016/S0955-0674(97)80061-0
  40. Johnson GL and Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002 ; 298 : 1911-2. https://doi.org/10.1126/science.1072682
  41. Sahu BD, Kumar JM and Sistla R. Baicalein, a bioflavonoid, prevents cisplatin-induced acute kidney injury by up-regulating antioxidant defense and down-regulating the MAPKs and NF-κB pathways. Plos One. 2015 ; 10 : 1-19.
  42. Lee ES, Ju HK, Moon TC, Lee E, Jahng Y, Lee SH and Chang HW. Inhibition of nitric oxide and tumor necrosis factor-alpha(TNF-alpha) production by prepenone compound through blockade of nuclear factor(NF)-κB activation in cultured murine macrophages. Biol. Pharm. Bull. 2004 ; 27 : 617-20. https://doi.org/10.1248/bpb.27.617
  43. Waetzig V, Czeloth K, Hidding U, Mielke K, Kanzow M, Brecht S, Goetz M, Lucius R, Herdegen T and Hanisch UK. c-Jun N-terminal kinases(JNKs) mediate pro-inflammatory actions of microglia. Glia. 2005 ; 50 : 235-46. https://doi.org/10.1002/glia.20173
  44. Nam JB, Lee MH, Choi HY, Sohn NW and Kang H. Effect of forsythiae fructus ethanol extract on inflammatory cytokine production and cellular signaling pathways in mouse macrophages. Korean Journal of Herbology. 2012 ; 27 : 59-64.
  45. Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapyrom molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta. 2005 ; 1754 : 253-62. https://doi.org/10.1016/j.bbapap.2005.08.017
  46. Lowenstein CJ and Snyder SH. Nitricoxide, a novel biologic messenger. Cell. 1992 ; 70 : 705-7. https://doi.org/10.1016/0092-8674(92)90301-r
  47. Gomez PF, Pillinger MH, Attur M, Marjanovic N, Dave M, Park J, Bingham CO, Al Mussawir H and Abramson SB. Resolution of inflammation: prostaglandin E2 dissociates nuclear trafficking of individual NF-kappa B subunits(p65, p50) in stimulated rheumatoid synovial fibroblasts. Journal of Immunology. 2005 ; 175 : 6924-30. https://doi.org/10.4049/jimmunol.175.10.6924
  48. Kim JI, Jin CY, Seo MJ, Lim HS, Lee YC, Joo WH, Choi BT, Jeong YK and Choi YH. Genistein-induced growth inhibition was associated with inhibition of cyclooxygenase-2 and telomerase activity in human cancer cells. J Life Sci. 2008 ; 18 : 884-90. https://doi.org/10.5352/JLS.2008.18.6.884