Acknowledgement
본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2022-00141900).
References
- Arjunan, P., Poolla, K., & Miller, C. (2020). EnergyStar++: Towards more accurate and explanatory building energy benchmarking. Applied Energy, 276, 115413 https://doi.org/10.1016/j.apenergy.2020.115413
- Arjunan, P., Poolla, K., & Miller, C. (2022). BEEM: Data-driven building energy benchmarking for Singapore. Energy and Buildings, 260, 111869 https://doi.org/10.1016/j.enbuild.2022.111869
- ASHRAE, (2017). ASHRAE Handbook: Fundamentals2017, ASHRAE.
- KEA. (2016). Building Energy Efficiency Certification, Korea Energy Agency.
- Louppe, G., Wehenkel, L., Sutera, A., & Geurts, P. (2013). Understanding variable importances in forests of randomized trees. Advances in neural information processing systems, 26.
- Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
- Machlev, R., Heistrene, L., Perl, M., Levy, K. Y., Belikov, J., Mannor, S., & Levron, Y. (2022). Explainable Artificial Intelligence (XAI) techniques for energy and power systems: Review, challenges and opportunities. Energy and AI, 100169.
- Morris, M. D. (1991). Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2), 161-174. https://doi.org/10.1080/00401706.1991.10484804
- Ribeiro, M. T., Singh, S., & Guestrin, C. (2016,). " Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144).
- Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., ... & Tarantola, S. (2008). Global sensitivity analysis: the primer. John Wiley & Sons.
- Sobol, I. M. (1993). Sensitivity analysis for non-linear mathematical models. Mathematical modelling and computational experiment, 1, 407-414.
- Srinivasan, S., Arjunan, P., Jin, B., Sangiovanni-Vincentelli, A. L., Sultan, Z., & Poolla, K. (2021). Explainable AI for chiller fault-detection systems: gaining human trust. Computer, 54(10), 60-68
- Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC bioinformatics, 8(1), 1-21. https://doi.org/10.1186/1471-2105-8-1
- Tian, W. (2013). A review of sensitivity analysis methods in building energy analysis. Renewable and sustainable energy reviews, 20, 411-419 https://doi.org/10.1016/j.rser.2012.12.014
- Yoo, Y.S, Yi, D.H., & Park, C.S. (2021). Uncertainty in sensitivity analysis of architectural design variables for heating and cooling loads depending on usage scenarios. Journal of the Architectural Institute of Korea, 37(11), 247-253. https://doi.org/10.5659/JAIK.2021.37.11.247