Acknowledgement
This research is financially supported by the China Postdoctoral Science Foundation (Grant No. 2022M711018), Natural Science Foundation of Jiangsu Province (Grant No. BK20220980), Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No. 2022ZB169), Fundamental Research Funds for the Central Universities (Grant No. B220201045) and the Key Laboratory of Concrete and Pre-stressed Concrete Structures of Ministry of Education (Grant No. CPCSME2022-02). The authors would like to thank for the financial supports.
References
- Amerini, F. and Meo, M. (2011), "Structural health monitoring of bolted joints using linear and nonlinear acoustic/ultrasound methods", Struct. Health Monit., 10(6), 659-672. http://dx.doi.org/10.1177/1475921710395810
- Basava, S. and Hess, D.P. (1998), "Bolted joint clamping force variation due to axial vibration", J. Sound V., 210(2), 255-265. https://doi.org/10.1006/jsvi.1997.1330
- Brons, M., Thomsen, J., Sah, S., Tcherniak, D. and Fidlin, A. (2020), "Analysis of transient vibrations for estimating bolted joint tightness", Nonlinear Struc. Syst., 1, 21-24. https://doi.org/10.1007/978-3-030-12391-8_3
- Chaki, S., Corneloup, G., Lillamand, I. and Walaszek, H. (2007), "Combination of longitudinal and transverse ultrasonic waves for in situ control of the tightening of bolts", J. Press. Vess. Tech-ASME., 129(3), 383-390. http://dx.doi.org/10.1115/1.2748821
- Chen, H.S. (2001), "The static and fatigue strength of bolted joints in composites with hygrothermal cycling", Compos Struct., 52(3-4), 295-306. https://doi.org/10.1016/S0263-8223(01)00022-8
- Chen, D.D., Huo, L.S. and Song, G.B. (2020), "EMI based multibolt looseness detection using series/parallel multi-sensing technique", Smart Struct. Syst., Int. J., 25(4), 423-432. http://dx.doi.org/10.12989/sss.2020.25.4.423
- Chen, D.D., Huo, L.S. and Song, G.B. (2022a), "High resolution bolt pre-load looseness monitoring using Coda Wave Interferometry", Struct. Health Monit., 21(5), 1959-1972. https://doi.org/10.1177/14759217211063420
- Chen, D.D., Shen, Z.H., Fu, R.L., Yuan, B. and Huo, L.S. (2022b), "Coda wave interferometry-based very early stage bolt looseness monitoring using a single piezoceramic transducer", Smart Mater. Struct., 31(3), 035030. https://doi.org/10.1088/1361-665X/ac5128
- Chung, J. and Sohn, H. (2021), "Detection and quantification of bolt loosening using RGB-D camera and Mask R-CNN", Smart Struct. Syst., Int. J., 27(5), 783-793. https://doi.org/10.12989/sss.2021.27.5.783
- Dao, P.B., Klepka, A., Pieczonk, L., Aymerich, F. and Staszewsk, W.J. (2017), "Impact damage detection in smart composites using nonline-ar acoustics-cointegration analysis for removal of undesired load effect", Smart Mater. Struct., 26(3), 035012. https://doi.org/10.1088/1361-665X/aa5744
- Donskoy, D., Sutin, A. and Ekimov, A. (2001), "Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing", NDT & E Int., 34(4), 231-238. https://doi.org/10.1016/S0963-8695(00)00063-3
- Goodier, J.N. and Sweeney, R.J. (1945), "Loosening by vibration of threaded fastenings", Mech. Eng., 67(12), 798-802.
- Guyer, R.A. and Johnson, P.A. (1999), "Nonlinear mesoscopic elasticity: evidence for a new class of materials", Phys. Today., 52(4), 30-36. https://doi.org/10.1063/1.882648
- Hei, C., Luo, M., Gong, P. and Song, G. (2019), "Quantitative evaluation of bolt connection using a single piezoceramic transducer and ultrasonic coda wave energy with the consideration of the piezoceramic aging effect", Smart Mater. Struct., 29(2), 027001. https://doi.org/10.1088/1361-665X/ab6076
- Hess, D.P. (1998), Vibration- and shock-induced loosening, Bickford J.H.; New York, NY, USA.
- Hughes, D.S. and Kelly, J.L. (1953), "Second-order elastic deformation of solids", Phys. Rev., 92(5), 1145-1149. http://dx.doi.org/10.1103/PhysRev.92.1145
- Ihn, J.B. and Chang, F.K. (2008), "Pitch-catch active sensing methods in structural health monitoring for aircraft structures", Struct. Health Monit., 7(1), 5-19. https://doi.org/10.1177/1475921707081979
- Johnson, G.C., Holt, A.C. and Cunningham, B. (1986), "An ultrasonic method for determining axial stress in bolts", J. Test Eval., 14(5), 253-259. http://dx.doi.org/10.1520/JTE10337J
- Joshi, S.G. and Pathare, R.G. (1984), "Ultrasonic instrument for measuring bolt stress" Ultrasonics, 22(6), 261-269. https://doi.org/10.1016/0041-624X(84)90043-X
- Kaminskaya, V. and Lipov, A. (1990), "Self loosening of bolted joints in machine tools during service", Metal Cut Machine Tools., 12, 81-85.
- Kim, J.T. Nguyen, K.D. and Park, J.H. (2001), "Wireless impedance sensor node and interface washer for damage monitoring in structural connections", Adv. Struct. Eng., 15(6), 871-885. https://doi.org/10.1260/1369-4332.15.6.871
- Li, H., Wang, B.J., Wei, P. and Wang, L. (2019), "Cross-laminated timber (CLT) in China: a state-of-the-art", J. Bioresources Bioprod., 4(1), 22-31. https://doi.org/10.21967/jbb.v4i1.190
- Meyer, J.J. and Adams, D.E. (2015), "Theoretical and experimental evidence for using impact modulation to assess bolted joints", Nonlinear Dynam., 81(1), 103-117. http://dx.doi.org/10.1007/s11071-015-1976-6
- Nagy, P.B. (1998), "Fatigue damage assessment by nonlinear ultrasonic materials characterization", Ultrasonics., 36(1-5), 375-381. https://doi.org/10.1016/S0041-624X(97)00040-1
- Nikravesh, S.M.Y. and Goudarzi, M. (2020), "Experimental and numerical looseness detection and assessment in flanged joints using vibro-acoustic modulation method", Mech. Based. Des. Struc., 50(4), 1400-1416. http://dx.doi.org/10.1080/15397734.2020.1753534
- Pai, N.G. and Hess, D.P. (2002a), "Experimental study of loosening of threaded fasteners due to dynamic shear loads", J. Sound V., 253(3), 585-602. https://doi.org/10.1006/jsvi.2001.4006
- Pai, N.G. and Hess, D.P. (2002b), "Three-dimensional finite element analysis of threaded fastener loosening due to dynamic shear load", Eng. Fail. Anal., 9(4), 383-402. https://doi.org/10.1016/S1350-6307(01)00024-3
- Panidis, T., Pavelko, I., Pavelko, V., Kuznetsov, S. and Ozolinsh, I. (2013), "Bolt-joint structural health monitoring by the method of elec-tromechanical impedance", Aircr. Eng. Aerosp. Tec., 86(3), 207-214. http://dx.doi.org/10.1108/AEAT-01-2013-0006
- Park, J.H., Huynh, T.C., Choi, S.H. and Kim, J.T. (2015), "Visionbased technique for bolt-loosening detection in wind turbine tower", Wind Struct., Int. J., 21(6), 709-726. http://dx.doi.org/10.12989/was.2015.21.6.709
- Pieczonka, L., Klepka, A., Martowicz, A. and Staszewski, W.J. (2015), "Nonlinear vibroacoustic wave modulations for structural damage detection: an overview", Optical Eng., 55(1), 011005. https://doi.org/10.1117/1.OE.55.1.011005
- Pieczonka, L., Zietek, L., Klepka, A., Staszewski, W.J., Aymerich, F. and Uhl, T. (2018), "Damage imaging in composites using nonlinear vibro-acoustic wave modulations", Struct. Control Health Monit., 25(2), 1-13. https://doi.org/10.1002/stc.2063
- Que, Z., Hou, T., Gao, Y., Teng, Q., Chen, Q., Wang, C. and Chang, C. (2019), "Influence of different connection types on mechanical behavior of girder trusses", J. Bioresources Bioprod., 4 (2), 89-98. https://doi.org/10.21967/jbb.v4i2.229
- Sutin, A.M. and Donskoy, D.M. (1998), "Vibro-acoustic modulation nondestructive evaluation technique", J. Intel. Mat. Syst. Struct., 9(9), 765-771. http://dx.doi.org/10.1117/12.305057
- Yang, J., Liu P., Yang, S., Lee, H. and Sohn, H. (2005), "Laser based impedance measurement for pipe corrosion and boltloosening detection", Smart Struct. Syst., Int. J., 15(1), 41-55. https://doi.org/10.12989/sss.2015.15.1.041
- Yang, Y. and Ng, C. and Kotousov, A. (2019), "Bolted joint integrity monitoring with second harmonic generated by guided waves", Struct. Health Monit., 18(1), 193-204. https://doi.org/10.1177/1475921718814399
- Yasui, H. and Kawashima, K. (2000), "Acoustoelastic measurement of bolt axial load with velocity ratio method", Proceedings of the 15th World Conference on Nondestructive Testing, Italy, Roma, October.
- Yin, H.Y., Wang, T., Yang, D., Liu, S.P., Shao, J.H. and Li, Y.R. (2016), "A smart washer for bolt looseness monitoring based on piezoelectric active sensing method", Appl. Sci., 6(11), p. 320. http://dx.doi.org/10.3390/app6110320
- Zhang, L., Chen, Z., Dong, H., Fu, S., Ma, L. and Yang, X. (2001), "Wood plastic composites based wood wall;' structure and thermal insulation performance", J. Bioresources Bioprod., 6(1), 65-74. https://doi.org/10.1016/j.jobab.2021.01.005
- Zhang, Z., Liu, M., Su, Z. and Xiao, Y. (2016), "Quantitative evaluation of residual torque of a loose bolt based on wave energy dissipation and vibro-acoustic modulation: a comparative study", J. Sound V., 383, 156-170. http://dx.doi.org/10.1016/j.jsv.2016.07.001
- Zhang, M.Y., Shen, Y.F., Xiao, L. and Qu, W.Z. (2017), "Application of subharmonic resonance for the detection of bolted joint looseness", Nonlinear Dynam., 88(3), 1643-1653. http://dx.doi.org/10.1007/s11071-017-3336-1
- Zhang, Z., Liu, M., Liao, Y., Su, Z. and Xiao, Y. (2018), "Contact acoustic nonlinearity (CAN)-based continuous monitoring of bolt loosen-ing: hybrid use of high-order harmonics and spectral sidebands", Mech. Syst. Signal Pr., 103, 280-294. https://doi.org/10.1016/j.ymssp.2017.10.009