References
- Agisoft Metashape Standard Edition (2021), https://www.agisoft.com/downloads/user-manuals/
- Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2014), "Semantic image segmentation with deep convolutional nets and fully connected crfs", arXiv preprint arXiv:1412.7062. https://doi.org/10.48550/arXiv.1412.7062
- Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2017a), "DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs", IEEE Trans. Pattern Anal. Mach. Intell., 40(4), 834-848. https://doi.org/10.1109/TPAMI.2017.2699184
- Chen, L.C., Papandreou, G., Schroff, F. and Adam, H. (2017b), "Rethinking atrous convolution for semantic image segmentation", arXiv preprint arXiv:1706.05587. https://doi.org/10.48550/arXiv.1706.05587
- Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H. (2018), "Encoder-decoder with atrous separable convolution for semantic image segmentation", Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, September.
- COLMAP (2022), https://colmap.github.io/
- El-Omari, S. and Moselhi, O. (2008), "Integrating 3D laser scanning and photogrammetry for progress measurement of construction work", Automat. Constr., 18(1), 1-9. https://doi.org/10.1016/j.autcon.2008.05.006
- He, T., Yang, Y., Shi, Y., Liang, X., Fu, S., Xie, G., Liu, B. and Liu, Y. (2022), "Quantifying spatial distribution of interrill and rill erosion in a loess at different slopes using structure from motion (SfM) photogrammetry", Int. Soil Water Conserv. Res., 10(3), 393-406. https://doi.org/10.1016/j.iswcr.2022.01.001
- Inzerillo, L., Di Mino, G. and Roberts, R. (2018), "Automation in construction image-based 3D reconstruction using traditional and UAV datasets for analysis of road pavement distress", Autom. Constr., 96, 457-469. https://doi.org/10.1016/j.autcon.2018.10.010
- Irschara, A., Kaufmann, V., Klopschitz, M., Bischof, H. and Leberl, F. (2010), "Towards fully automatic photogrammetric reconstruction using digital images taken from UAVs", Proc. Int. Soc. Photogramm. Remote Sens., 38(7A), 65-70.
- Jiang, Y., Bai, Y. and Han, S. (2020), "Determining ground elevations covered by vegetation on construction sites determining ground elevations covered by vegetation on construction sites using drone-based orthoimage and convolutional neural network", J. Comput. Civil. Eng., 34(6). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000930
- Khaloo, A., Lattanzi, D., Cunningham, K., Dell'Andrea, R. and Riley, M. (2018), "Unmanned aerial vehicle inspection of the Placer River Trail Bridge through image-based 3D modelling", Struct. Infrastruct. Eng., 14(1), 124-136. https://doi.org/10.1080/15732479.2017.1330891
- Liu, T. and Abd-Elrahman, A. (2018), "Deep convolutional neural network training enrichment using multi-view object-based analysis of Unmanned Aerial Systems imagery for wetlands classification", ISPRS J. Photogramm. Remote Sens., 139, 154-170. https://doi.org/10.1016/j.isprsjprs.2018.03.006
- Liu, Z., Brigham, R., Long, E.R., Wilson, L., Frost, A., Orr, S.A. and Grau-Bove, J. (2022), "Semantic segmentation and photogrammetry of crowdsourced images to monitor historic facades", Heritage Science, 10(1), 1-17. https://doi.org/10.1186/s40494-022-00664-y
- Menegoni, N., Giordan, D., Perotti, C. and Tannant, D.D. (2019), "Detection and geometric characterization of rock mass discontinuities using a 3D high-resolution digital outcrop model generated from RPAS imagery - Ormea rock slope, Italy", Eng. Geol., 252, 145-163. https://doi.org/10.1016/j.enggeo.2019.02.028
- Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N. and Terzopoulos, D. (2021), "Image segmentation using deep learning: A survey", IEEE Trans. Pattern Anal. Mach. Intell., 44(7), 3523-3542. https://doi.org/10.1109/TPAMI.2021.3059968
- Mustafa, A., Volino, M., Kim, H., Guillemaut, J.Y. and Hilton, A. (2021), "Temporally coherent general dynamic scene reconstruction", Int. J. Comput. Vision, 129(1), 123-141. https://doi.org/10.48550/arXiv.1907.08195
- Omar, H., Mahdjoubi, L. and Kheder, G. (2018), "Towards an automated photogrammetry-based approach for monitoring and controlling construction site activities", Comput. Ind., 98, 172-182. https://doi.org/10.1016/j.compind.2018.03.012
- Pix4D (2021), https://support.pix4d.com/hc/en-us/sections/360003718992-Manual
- Popescu, C., Taljsten, B., Blanksvard, T. and Elfgren, L. (2019), "3D reconstruction of existing concrete bridges using optical methods", Struct. Infrastruct. Eng., 15(7), 912-924. https://doi.org/10.1080/15732479.2019.1594315
- Rahaman, H. and Champion, E. (2019), "To 3D or not 3D: Choosing a photogrammetry workflow for cultural heritage groups", Heritage, 2(3), 1835-1851. https://doi.org/10.3390/heritage2030112
- Tang, S., Zhang, Y., Li, Y., Yuan, Z., Wang, Y., Zhang, X., Li, X., Zhang, Y., Guo, R. and Wang, W. (2019), "Fast and automatic reconstruction of semantically rich 3D indoor maps from lowquality RGB-D sequences", Sensors, 19(3), 533. https://doi.org/10.3390/s19030533
- The Cityscapes Dataset (2020), https://www.cityscapes-dataset.com/
- Yucer, K., Sorkine-Hornung, A., Wang, O. and Sorkine-Hornung, O. (2016), "Efficient 3D object segmentation from densely sampled light fields with applications to 3D reconstruction", ACM Transactions on Graphics (TOG), 35(3), 1-15. https://doi.org/10.1145/2876504
- Zha, F., Fu, Y., Wang, P., Guo, W., Li, M., Wang, X. and Cai, H. (2020), "Semantic 3D reconstruction for robotic manipulators with an eye-in-hand vision system", Appl. Sci., 10(3), 1183. https://doi.org/10.3390/app10031183