Acknowledgement
This study was supported by the Korea Agency for Infrastructure Technology Advancement (KAIA), grant funded by the Ministry of Land, Infrastructure, and Transport (Grant 21CTAP-C163726-01).
References
- Atherton, T.J. and Kerbyson, D.J. (1999), "Size invariant circle detection", Image Vision Comput., 17(11), 795-803. https://doi.org/10.1016/s0262-8856(98)00160-7
- Casciati, F. and Fuggini, C. (2011), "Monitoring a steel building using GPS sensors", Smart Struct. Syst., Int. J., 7(5), 349-363. https://doi.org/10.12989/SSS.2011.7.5.349
- Cho, S., Park, J.W., Palanisamy, R.P. and Sim, S.H. (2016), "Reference-free displacement estimation of bridges using Kalman filter-based multimetric data fusion", J. Sensors, 2016. https://doi.org/10.1155/2016/3791856
- Dong, C.Z., Celik, O. and Catbas, F.N. (2019), "Marker-free monitoring of the grandstand structures and modal identification using computer vision methods", Struct. Health Monitor., 18(5-6), 1491-1509. https://doi.org/10.1177/1475921718806895/ASSET/IMAGES/LARGE/10.1177_1475921718806895-FIG2.JPEG
- Dworakowski, Z., Kohut, P., Gallina, A., Holak, K. and Uhl, T. (2016), "Vision-based algorithms for damage detection and localization in structural health monitoring", Struct. Control Health Monitor., 23(1), 35-50. https://doi.org/10.1002/stc.1755
- Federal Highway Administration (2007), Load and Resistance Factor Design (LRFD) for Highway Bridge Superstructures REFERENCE MANUAL.
- Feng, D. and Feng, M.Q. (2016), "Vision-based multipoint displacement measurement for structural health monitoring", Struct. Control Health Monitor., 23(5), 876-890. https://doi.org/10.1002/stc.1819
- Feng, M.Q., Fukuda, Y., Feng, D. and Mizuta, M. (2015), "Nontarget Vision Sensor for Remote Measurement of Bridge Dynamic Response", J. Bridge Eng., 20(12), 04015023. https://doi.org/10.1061/(asce)be.1943-5592.0000747
- Find circles using circular Hough transform - MATLAB imfindcircles (n.d.), Retrieved May 31, 2021, from https://www.mathworks.com/help/images/ref/imfindcircles.html
- Fukuda, Y., Feng, M.Q. and Shinozuka, M. (2010), "Cost-effective vision-based system for monitoring dynamic response of civil engineering structures", Struct. Control Health Monitor., 17(8), 918-936. https://doi.org/10.1002/stc.360
- Garcia-Sanchez, D., Fernandez-Navamuel, A., Sanchez, D.Z., Alvear, D. and Pardo, D. (2020), "Bearing assessment tool for longitudinal bridge performance", J. Civil Struct. Health Monitor., 10, 1023-1036. https://doi.org/10.1007/s13349-020-00432-1
- Garg, P., Moreu, F., Ozdagli, A., Taha, M.R. and Mascarenas, D. (2019), "Noncontact dynamic displacement measurement of structures using a moving laser Doppler vibrometer", J. Bridge Eng., 24(9), 04019089. https://doi.org/10.1061/(asce)be.1943-5592.0001472
- Garg, P., Nasimi, R., Ozdagli, A., Zhang, S., Mascarenas, D.D.L., Reda Taha, M. and Moreu, F. (2020), "Measuring transverse displacements using unmanned aerial systems laser doppler vibrometer (UAS-LDV): Development and field validation", Sensors, 20(21), 1-16. https://doi.org/10.3390/s20216051
- Guo, T., Liu, J., Zhang, Y. and Pan, S. (2015), "Displacement Monitoring and Analysis of Expansion Joints of Long-Span Steel Bridges with Viscous Dampers", J. Bridge Eng., 20(9), 04014099. https://doi.org/10.1061/(ASCE)BE.1943
- Hoskere, V., Asce, S.M., Park, J.-W., Yoon, H., Asce, A.M., Spencer, B.F. and Asce, F. (2019), "Vision-Based Modal Survey of Civil Infrastructure Using Unmanned Aerial Vehicles", J. Struct. Eng., 145(7), 04019062. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002321
- Huang, H.-B., Yi, T.-H., Li, H.-N. and Liu, H. (2018), "New Representative Temperature for Performance Alarming of Bridge Expansion Joints through Temperature-Displacement Relationship", J. Bridge Eng., 23(7), 04018043. https://doi.org/10.1061/(asce)be.1943-5592.0001258
- Hussan, M., Kaloop, M.R., Sharmin, F. and Kim, D. (2018), "GPS Performance Assessment of Cable-Stayed Bridge using Wavelet Transform and Monte-Carlo Techniques", KSCE J. Civil Eng., 22(11), 4385-4398. https://doi.org/10.1007/s12205-018-0438-3
- Jeong, Y., Park, D. and Park, K.H. (2017), "PTZ camera-based displacement sensor system with perspective distortion correction unit for early detection of building destruction", Sensors, 17(3), 430. https://doi.org/10.3390/s17030430
- Jo, H., Sim, S.H., Tatkowski, A., Spencer, B.F. and Nelson, M.E. (2013), "Feasibility of displacement monitoring using low-cost GPS receivers", Struct. Control Health Monitor., 20(9), 1240-1254. https://doi.org/10.1002/stc.1532
- Kanopoulos, N., Vasanthavada, N. and Baker, R.L. (1988), "Design of an Image Edge Detection Filter Using the Sobel Operator", IEEE J. Solid-State Circuits, 23(2), 358-367. https://doi.org/10.1109/4.996
- Kim, K., Choi, J., Chung, J., Koo, G., Bae, I.H. and Sohn, H. (2018), "Structural displacement estimation through multi-rate fusion of accelerometer and RTK-GPS displacement and velocity measurements", Measurement: J. Int. Measure. Confed., 130, 223-235. https://doi.org/10.1016/j.measurement.2018.07.090
- Korean Authority of Land and Infrastructure Safety (2019), Detailed guidelines for safety and maintenance of infrastructures (Bridges).
- Lee, J.J. and Shinozuka, M. (2006), "A vision-based system for remote sensing of bridge displacement", NDT and E Int., 39(5), 425-431. https://doi.org/10.1016/j.ndteint.2005.12.003
- Lee, J.J., Fukuda, Y., Shinozuka, M., Cho, S. and Yun, C.-B. (2007), "Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures", Smart Struct. Syst., Int. J., 3(3), 373-384. https://doi.org/10.12989/sss.2007.3.3.373
- Lee, J., Lee, K.C., Cho, S. and Sim, S.H. (2017), "Computer vision-based structural displacement measurement robust to light-induced image degradation for in-service bridges", Sensors, 17(10), 2317. https://doi.org/10.3390/s17102317
- Lee, J., Lee, K.C., Jeong, S., Lee, Y.J. and Sim, S.H. (2020), "Long-term displacement measurement of full-scale bridges using camera ego-motion compensation", Mech. Syst. Signal Process., 140, 106651. https://doi.org/10.1016/J.YMSSP.2020.106651
- Luo, L., Feng, M.Q., Wu, J. and Bi, L. (2021), "Modeling and detection of heat haze in computer vision based displacement measurement", Measurement, 182, 109772. https://doi.org/10.1016/J.MEASUREMENT.2021.109772
- Ma, Z., Choi, J. and Sohn, H. (2022), "Real-time structural displacement estimation by fusing asynchronous acceleration and computer vision measurements", Comput.-Aided Civil Infrastr. Eng., 37(6), 688-703. https://doi.org/10.1111/MICE.12767
- Moschas, F., Psimoulis, P.A. and Stiros, S.C. (2013), "GPS/RTS data fusion to overcome signal deficiencies in certain bridge dynamic monitoring projects", Smart Struct. Syst., Int. J., 12(4), 1738-1991. https://doi.org/10.12989/sss.2013.12.3_4.251
- Nassif, H.H., Gindy, M. and Davis, J. (2005), "Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration", NDT and E Int., 38(3), 213-218. https://doi.org/10.1016/j.ndteint.2004.06.012
- Park, C. and Lee, H. (2016), "Prediction on domestic transportation infrastructure maintenance investment", Construction Economy Research Institute of Korea. http://www.cerik.re.kr/report/issue/detail/1964
- Park, J.W., Lee, J.J., Jung, H.J. and Myung, H. (2010), "Visionbased displacement measurement method for high-rise building structures using partitioning approach", NDT & E Int., 43(7), 642-647. https://doi.org/10.1016/J.NDTEINT.2010.06.009
- Ribeiro, D., Santos, R., Cabral, R., Saramago, G., Montenegro, P., Carvalho, H., Correia, J. and Calcada, R. (2021), "Non-contact structural displacement measurement using Unmanned Aerial Vehicles and video-based systems", Mech. Syst. Signal Process., 160, 107869. https://doi.org/10.1016/J.YMSSP.2021.107869
- Shao, Y., Li, L., Li, J., An, S. and Hao, H. (2021), "Computer vision based target-free 3D vibration displacement measurement of structures", Eng. Struct., 246, 113040. https://doi.org/10.1016/J.ENGSTRUCT.2021.113040
- Shariati, A., Schumacher, T. and Ramanna, N. (2015), "Eulerianbased virtual visual sensors to detect natural frequencies of structures", J. Civil Struct. Health Monitor., 5(4), 457-468. https://doi.org/10.1007/s13349-015-0128-5
- Shrestha, A., Dang, J., Nakajima, K. and Wang, X. (2020), "Image processing-based real-time displacement monitoring methods using smart devices", Struct. Control Health Monitor., 27(2), e2473. https://doi.org/10.1002/STC.2473
- Sladek, J., Ostrowska, K., Kohut, P., Holak, K., Gaska, A. and Uhl, T. (2013), "Development of a vision based deflection measurement system and its accuracy assessment", Measurement: J. Int. Measure. Confed., 46(3), 1237-1249. https://doi.org/10.1016/j.measurement.2012.10.021
- Song, Q., Wu, J., Wang, H., An, Y. and Tang, G. (2022), "Computer vision-based illumination-robust and multi-point simultaneous structural displacement measuring method", Mech. Syst. Signal Process., 170, 108822. https://doi.org/10.1016/J.YMSSP.2022.108822
- Watson, C., Watson, T. and Coleman, R. (2007), "Structural Monitoring of Cable-Stayed Bridge: Analysis of GPS versus Modeled Deflections", J. Survey. Eng., 133(1), 23-28. https://doi.org/10.1061/(asce)0733-9453(2007)133:1(23)
- Weng, Y., Shan, J., Lu, Z., Lu, X. and Spencer, B.F. (2021), "Homography-based structural displacement measurement for large structures using unmanned aerial vehicles", Comput.-Aided Civil Infrastr. Eng., 36(9), 1114-1128. https://doi.org/10.1111/MICE.12645
- Wu, L.J., Casciati, F. and Casciati, S. (2014), "Dynamic testing of a laboratory model via vision-based sensing", Eng. Struct., 60, 113-125. https://doi.org/10.1016/j.engstruct.2013.12.002
- Xia, Q., Zhou, L. and Zhang, J. (2018), "Thermal performance analysis of a long-span suspension bridge with long-term monitoring data", J. Civil Struct. Health Monitor., 8(4), 543- 553. https://doi.org/10.1007/s13349-018-0299-y
- Xing, L., Dai, W. and Zhang, Y. (2022), "Improving displacement measurement accuracy by compensating for camera motion and thermal effect on camera sensor", Mech. Syst. Signal Process., 167, 108525. https://doi.org/10.1016/J.YMSSP.2021.108525
- Xu, Y., Brownjohn, J.M.W., Hester, D. and Koo, K.Y. (2017), "Long-span bridges: Enhanced data fusion of GPS displacement and deck accelerations", Eng. Struct., 147, 639-651. https://doi.org/10.1016/j.engstruct.2017.06.018
- Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart Struct. Syst., Int. J., 12(3_4), 363-379. https://doi.org/10.12989/SSS.2013.12.3_4.363
- Ye, X.W., Dong, C.Z. and Liu, T. (2016a), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart Struct. Syst., Int. J., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935
- Ye, X.W., Yi, T.H., Dong, C.Z. and Liu, T. (2016b), "Vision-based structural displacement measurement: System performance evaluation and influence factor analysis", Measurement: J. Int. Measure. Confed., 88, 372-384. https://doi.org/10.1016/j.measurement.2016.01.024
- Yi, T.H., Li, H.N. and Gu, M. (2013), "Wavelet based multi-step filtering method for bridge health monitoring using GPS and accelerometer", Smart Struct. Syst., Int. J., 11(4), 331-348. https://doi.org/10.12989/SSS.2013.11.4.331
- Yoon, H., Elanwar, H., Choi, H., Golparvar-Fard, M. and Spencer, B.F. (2016), "Target-free approach for vision-based structural system identification using consumer-grade cameras", Struct. Control Health Monitor., 23(12), 1405-1416. https://doi.org/10.1002/STC.1850
- Zhao, H., Ding, Y., Nagarajaiah, S. and Li, A. (2019), "Longitudinal displacement behavior and girder end reliability of a jointless steel-truss arch railway bridge during operation", Appl. Sci., 9(11), 2222. https://doi.org/10.3390/app9112222
- Zhu, J., Zhang, C., Lu, Z. and Li, X. (2021), "A multi-resolution deep feature framework for dynamic displacement measurement of bridges using vision-based tracking system", Measurement, 183, 109847. https://doi.org/10.1016/J.MEASUREMENT.2021.109847