DOI QR코드

DOI QR Code

Proline Metabolism in Neurological and Psychiatric Disorders

  • Yao, Yuxiao (The Fifth Affiliated Hospital of Guangzhou Medical University) ;
  • Han, Weiping (Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR))
  • 투고 : 2022.07.18
  • 심사 : 2022.09.02
  • 발행 : 2022.11.30

초록

Proline plays a multifaceted role in protein synthesis, redox balance, cell fate regulation, brain development, and other cellular and physiological processes. Here, we focus our review on proline metabolism in neurons, highlighting the role of dysregulated proline metabolism in neuronal dysfunction and consequently neurological and psychiatric disorders. We will discuss the association between genetic and protein function of enzymes in the proline pathway and the development of neurological and psychiatric disorders. We will conclude with a potential mechanism of proline metabolism in neuronal function and mental health.

키워드

과제정보

Research in the laboratories of W.H. is supported by A*STAR Intramural Funding, the Strategic Research Program (the Brain-Body Initiative) and the Central Research Fund.

참고문헌

  1. Abuawad, A., Mbadugha, C., Ghaemmaghami, A.M., and Kim, D. (2020). Metabolic characterisation of THP-1 macrophage polarisation using LC- MS-based metabolite profiling. Metabolomics 16, 33. https://doi.org/10.1007/s11306-020-01656-4
  2. Alia, Pardha Saradhi, P., and Mohanty, P. (1997). Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. J. Photochem. Photobiol. B 38, 253-257. https://doi.org/10.1016/S1011-1344(96)07470-2
  3. Allweis, C., Landau, T., Abeles, M., and Magnes, J. (1966). The oxidation of uniformly labelled albumin-bound palmitic acid to CO2 by the perfused cat brain. J. Neurochem. 13, 795-804. https://doi.org/10.1111/j.1471-4159.1966.tb05874.x
  4. Arrieta-Cruz, I. and Gutierrez-Juarez, R. (2016). The role of circulating amino acids in the hypothalamic regulation of liver glucose metabolism. Adv. Nutr. 7, 790S-797S. https://doi.org/10.3945/an.115.011171
  5. Barber, C.N. and Raben, D.M. (2019). Lipid metabolism crosstalk in the brain: glia and neurons. Front. Cell. Neurosci. 13, 212. https://doi.org/10.3389/fncel.2019.00212
  6. Bartels, T., De Schepper, S., and Hong, S. (2020). Microglia modulate neurodegeneration in Alzheimer's and Parkinson's diseases. Science 370, 66-69. https://doi.org/10.1126/science.abb8587
  7. Baumgartner, M.R., Hu, C.A., Almashanu, S., Steel, G., Obie, C., Aral, B., Rabier, D., Kamoun, P., Saudubray, J.M., and Valle, D. (2000). Hyperammonemia with reduced ornithine, citrulline, arginine and proline: a new inborn error caused by a mutation in the gene encoding delta(1)- pyrroline-5-carboxylate synthase. Hum. Mol. Genet. 9, 2853-2858. https://doi.org/10.1093/hmg/9.19.2853
  8. Belanger, M., Allaman, I., and Magistretti, P.J. (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14, 724-738. https://doi.org/10.1016/j.cmet.2011.08.016
  9. Bellon, A. (2007). New genes associated with schizophrenia in neurite formation: a review of cell culture experiments. Mol. Psychiatry 12, 620-629. https://doi.org/10.1038/sj.mp.4001985
  10. Bender, H.U., Almashanu, S., Steel, G., Hu, C.A., Lin, W.W., Willis, A., Pulver, A., and Valle, D. (2005). Functional consequences of PRODH missense mutations. Am. J. Hum. Genet. 76, 409-420. https://doi.org/10.1086/428142
  11. Calabresi, P., Castrioto, A., Di Filippo, M., and Picconi, B. (2013). New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson's disease. Lancet Neurol. 12, 811-821. https://doi.org/10.1016/S1474-4422(13)70118-2
  12. Campisi, J. (2013). Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685-705. https://doi.org/10.1146/annurev-physiol-030212-183653
  13. Chan, D.C. (2020). Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol. 15, 235-259. https://doi.org/10.1146/annurev-pathmechdis-012419-032711
  14. Clark, J.A. and Amara, S.G. (1993). Amino acid neurotransmitter transporters: structure, function, and molecular diversity. Bioessays 15, 323-332. https://doi.org/10.1002/bies.950150506
  15. Coyle, J.T. (2006). Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell. Mol. Neurobiol. 26, 365-384. https://doi.org/10.1007/s10571-006-9062-8
  16. Crabtree, G.W., Park, A.J., Gordon, J.A., and Gogos, J.A. (2016). Cytosolic accumulation of L-proline disrupts GABA-ergic transmission through GAD blockade. Cell Rep. 17, 570-582. https://doi.org/10.1016/j.celrep.2016.09.029
  17. D'Aniello, S., Somorjai, I., Garcia-Fernandez, J., Topo, E., and D'Aniello, A. (2011). D-Aspartic acid is a novel endogenous neurotransmitter. FASEB J. 25, 1014-1027. https://doi.org/10.1096/fj.10-168492
  18. de Koning, M.B., van Duin, E.D., Boot, E., Bloemen, O.J., Bakker, J.A., Abel, K.M., and van Amelsvoort, T.A. (2015). PRODH rs450046 and proline x COMT Val(1)(5)(8) Met interaction effects on intelligence and startle in adults with 22q11 deletion syndrome. Psychopharmacology (Berl.) 232, 3111-3122. https://doi.org/10.1007/s00213-015-3971-5
  19. de Oliveira Figueiredo, E.C., Bondiolotti, B.M., Laugeray, A., and Bezzi, P. (2022). Synaptic plasticity dysfunctions in the pathophysiology of 22q11 deletion syndrome: is there a role for astrocytes? Int. J. Mol. Sci. 23, 4412. https://doi.org/10.3390/ijms23084412
  20. Dhopeshwarkar, G.A. and Mead, J.F. (1970). Fatty acid uptake by the brain. 3. Incorporation of (1-14C)oleic acid into the adult rat brain. Biochim. Biophys. Acta 210, 250-256. https://doi.org/10.1016/0005-2760(70)90169-4
  21. Di Paolo, G., Moskowitz, H.S., Gipson, K., Wenk, M.R., Voronov, S., Obayashi, M., Flavell, R., Fitzsimonds, R.M., Ryan, T.A., and De Camilli, P. (2004). Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431, 415-422. https://doi.org/10.1038/nature02896
  22. Dienel, G.A. (2019). Brain glucose metabolism: integration of energetics with function. Physiol. Rev. 99, 949-1045. https://doi.org/10.1152/physrev.00062.2017
  23. Ding, J., Kuo, M.L., Su, L., Xue, L., Luh, F., Zhang, H., Wang, J., Lin, T.G., Zhang, K., Chu, P., et al. (2017). Human mitochondrial pyrroline-5-carboxylate reductase 1 promotes invasiveness and impacts survival in breast cancers. Carcinogenesis 38, 519-531. https://doi.org/10.1093/carcin/bgx022
  24. Ebert, D., Haller, R.G., and Walton, M.E. (2003). Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J. Neurosci. 23, 5928-5935. https://doi.org/10.1523/JNEUROSCI.23-13-05928.2003
  25. Eggers, A.E. (2013). A serotonin hypothesis of schizophrenia. Med. Hypotheses 80, 791-794. https://doi.org/10.1016/j.mehy.2013.03.013
  26. Escande-Beillard, N., Loh, A., Saleem, S.N., Kanata, K., Hashimoto, Y., Altunoglu, U., Metoska, A., Grandjean, J., Ng, F.M., Pomp, O., et al. (2020). Loss of PYCR2 causes neurodegeneration by increasing cerebral glycine levels via SHMT2. Neuron 107, 82-94.e6. https://doi.org/10.1016/j.neuron.2020.03.028
  27. Falabella, M., Vernon, H.J., Hanna, M.G., Claypool, S.M., and Pitceathly, R. (2021). Cardiolipin, mitochondria, and neurological disease. Trends Endocrinol. Metab. 32, 224-237. https://doi.org/10.1016/j.tem.2021.01.006
  28. Feigenson, K.A., Kusnecov, A.W., and Silverstein, S.M. (2014). Inflammation and the two-hit hypothesis of schizophrenia. Neurosci. Biobehav. Rev. 38, 72-93. https://doi.org/10.1016/j.neubiorev.2013.11.006
  29. Fichman, Y., Gerdes, S.Y., Kovacs, H., Szabados, L., Zilberstein, A., and Csonka, L.N. (2015). Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biol. Rev. Camb. Philos. Soc. 90, 1065-1099. https://doi.org/10.1111/brv.12146
  30. Fielder, E., von Zglinicki, T., and Jurk, D. (2017). The DNA damage response in neurons: die by apoptosis or survive in a senescence-like state? J. Alzheimers Dis. 60(s1), S107-S131. https://doi.org/10.3233/JAD-161221
  31. Frajerman, A., Scoriels, L., Kebir, O., and Chaumette, B. (2021). Shared biological pathways between antipsychotics and omega-3 fatty acids: a key feature for schizophrenia preventive treatment? Int. J. Mol. Sci. 22, 6881. https://doi.org/10.3390/ijms22136881
  32. Franco, R., Rivas-Santisteban, R., Navarro, G., Pinna, A., and Reyes-Resina, I. (2021). Genes implicated in familial Parkinson's disease provide a dual picture of nigral dopaminergic neurodegeneration with mitochondria taking center stage. Int. J. Mol. Sci. 22, 4643. https://doi.org/10.3390/ijms22094643
  33. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789-1858. https://doi.org/10.1016/S0140-6736(18)32279-7
  34. Gogos, J.A., Santha, M., Takacs, Z., Beck, K.D., Luine, V., Lucas, L.R., Nadler, J.V., and Karayiorgou, M. (1999). The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat. Genet. 21, 434-439. https://doi.org/10.1038/7777
  35. Guernsey, D.L., Jiang, H., Evans, S.C., Ferguson, M., Matsuoka, M., Nightingale, M., Rideout, A.L., Provost, S., Bedard, K., Orr, A., et al. (2009). Mutation in pyrroline-5-carboxylate reductase 1 gene in families with cutis laxa type 2. Am. J. Hum. Genet. 85, 120-129. https://doi.org/10.1016/j.ajhg.2009.06.008
  36. Guo, X., Tang, P., Yang, C., and Li, R. (2018). Proline dehydrogenase gene (PRODH) polymorphisms and schizophrenia susceptibility: a metaanalysis. Metab. Brain Dis. 33, 89-97. https://doi.org/10.1007/s11011-017-0128-8
  37. Howes, O.D. and Kapur, S. (2009). The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr. Bull. 35, 549-562. https://doi.org/10.1093/schbul/sbp006
  38. Hsieh, H., Boehm, J., Sato, C., Iwatsubo, T., Tomita, T., Sisodia, S., and Malinow, R. (2006). AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52, 831-843. https://doi.org/10.1016/j.neuron.2006.10.035
  39. Hu, C.A., Donald, S.P., Yu, J., Lin, W.W., Liu, Z., Steel, G., Obie, C., Valle, D., and Phang, J.M. (2007). Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis. Mol. Cell. Biochem. 295, 85-92. https://doi.org/10.1007/s11010-006-9276-6
  40. Iwamoto, K., Bundo, M., and Kato, T. (2005). Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum. Mol. Genet. 14, 241-253. https://doi.org/10.1093/hmg/ddi022
  41. Kori, M., Aydin, B., Unal, S., Arga, K.Y., and Kazan, D. (2016). Metabolic biomarkers and neurodegeneration: a pathway enrichment analysis of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. OMICS 20, 645-661. https://doi.org/10.1089/omi.2016.0106
  42. Kuo, C.L., Chou, H.Y., Chiu, Y.C., Cheng, A.N., Fan, C.C., Chang, Y.N., Chen, C.H., Jiang, S.S., Chen, N.J., and Lee, A.Y. (2020). Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis. Cancer Lett. 474, 138-150. https://doi.org/10.1016/j.canlet.2020.01.019
  43. Kupeli, A.E., Tatli, C.I., Seker, K.G., Carpar, E., Sobarzo-Sanchez, E., and Capasso, R. (2021). Natural compounds as medical strategies in the prevention and treatment of psychiatric disorders seen in neurological diseases. Front. Pharmacol. 12, 669638. https://doi.org/10.3389/fphar.2021.669638
  44. Lee, H.G., Wheeler, M.A., and Quintana, F.J. (2022). Function and therapeutic value of astrocytes in neurological diseases. Nat. Rev. Drug Discov. 21, 339-358. https://doi.org/10.1038/s41573-022-00390-x
  45. Lee, K.W., Kim, S.J., Park, J.B., and Lee, K.J. (2011). Relationship between depression anxiety stress scale (DASS) and urinary hydroxyproline and proline concentrations in hospital workers. J. Prev. Med. Public Health 44, 9-13. https://doi.org/10.3961/jpmph.2011.44.1.9
  46. Li, Y., Bie, J., Song, C., Liu, M., and Luo, J. (2021). PYCR, a key enzyme in proline metabolism, functions in tumorigenesis. Amino Acids 53, 1841-1850. https://doi.org/10.1007/s00726-021-03047-y
  47. Liang, S.T., Audira, G., Juniardi, S., Chen, J.R., Lai, Y.H., Du, Z.C., Lin, D.S., and Hsiao, C.D. (2019). Zebrafish carrying pycr1 Gene deficiency display aging and multiple behavioral abnormalities. Cells 8, 453. https://doi.org/10.3390/cells8050453
  48. Liang, X., Zhang, L., Natarajan, S.K., and Becker, D.F. (2013). Proline mechanisms of stress survival. Antioxid. Redox Signal. 19, 998-1011. https://doi.org/10.1089/ars.2012.5074
  49. Liu, W., Le, A., Hancock, C., Lane, A.N., Dang, C.V., Fan, T.W., and Phang, J.M. (2012). Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc. Natl. Acad. Sci. U. S. A. 109, 8983-8988. https://doi.org/10.1073/pnas.1203244109
  50. Liu, Y., Borchert, G.L., Donald, S.P., Diwan, B.A., Anver, M., and Phang, J.M. (2009). Proline oxidase functions as a mitochondrial tumor suppressor in human cancers. Cancer Res. 69, 6414-6422. https://doi.org/10.1158/0008-5472.CAN-09-1223
  51. Liu, Y., Borchert, G.L., Surazynski, A., Hu, C.A., and Phang, J.M. (2006). Proline oxidase activates both intrinsic and extrinsic pathways for apoptosis: the role of ROS/superoxides, NFAT and MEK/ERK signaling. Oncogene 25, 5640-5647. https://doi.org/10.1038/sj.onc.1209564
  52. Martinat, M., Rossitto, M., Di Miceli, M., and Laye, S. (2021). Perinatal dietary polyunsaturated fatty acids in brain development, role in neurodevelopmental disorders. Nutrients 13, 1185. https://doi.org/10.3390/nu13041185
  53. Martinez-Cue, C. and Rueda, N. (2020). Cellular senescence in neurodegenerative diseases. Front. Cell. Neurosci. 14, 16. https://doi.org/10.3389/fncel.2020.00016
  54. Mattson, M.P., Gleichmann, M., and Cheng, A. (2008). Mitochondria in neuroplasticity and neurological disorders. Neuron 60, 748-766. https://doi.org/10.1016/j.neuron.2008.10.010
  55. Mayneris-Perxachs, J., Castells-Nobau, A., Arnoriaga-Rodriguez, M., Martin, M., de la Vega-Correa, L., Zapata, C., Burokas, A., Blasco, G., Coll, C., Escrichs, A., et al. (2022). Microbiota alterations in proline metabolism impact depression. Cell Metab. 34, 681-701.e10. https://doi.org/10.1016/j.cmet.2022.04.001
  56. Mitsubuchi, H., Nakamura, K., Matsumoto, S., and Endo, F. (2014). Biochemical and clinical features of hereditary hyperprolinemia. Pediatr. Int. 56, 492-496. https://doi.org/10.1111/ped.12420
  57. Nagano, T., Nakashima, A., Onishi, K., Kawai, K., Awai, Y., Kinugasa, M., Iwasaki, T., Kikkawa, U., and Kamada, S. (2017). Proline dehydrogenase promotes senescence through the generation of reactive oxygen species. J. Cell Sci. 130, 1413-1420.
  58. Nakayama, T., Al-Maawali, A., El-Quessny, M., Rajab, A., Khalil, S., Stoler, J.M., Tan, W.H., Nasir, R., Schmitz-Abe, K., Hill, R.S., et al. (2015). Mutations in PYCR2, encoding pyrroline-5-carboxylate reductase 2, cause microcephaly and hypomyelination. Am. J. Hum. Genet. 96, 709-719. https://doi.org/10.1016/j.ajhg.2015.03.003
  59. Ota, V.K., Bellucco, F.T., Gadelha, A., Santoro, M.L., Noto, C., Christofolini, D.M., Assuncao, I.B., Yamada, K.M., Ribeiro-dos-Santos, A.K., Santos, S., et al. (2014). PRODH polymorphisms, cortical volumes and thickness in schizophrenia. PLoS One 9, e87686. https://doi.org/10.1371/journal.pone.0087686
  60. Owen, M.J., Sawa, A., and Mortensen, P.B. (2016). Schizophrenia. Lancet 388, 86-97. https://doi.org/10.1016/S0140-6736(15)01121-6
  61. Palop, J.J. and Mucke, L. (2010). Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat. Neurosci. 13, 812-818. https://doi.org/10.1038/nn.2583
  62. Pandhare, J., Cooper, S.K., and Phang, J.M. (2006). Proline oxidase, a proapoptotic gene, is induced by troglitazone: evidence for both peroxisome proliferator-activated receptor gamma-dependent and -independent mechanisms. J. Biol. Chem. 281, 2044-2052. https://doi.org/10.1074/jbc.M507867200
  63. Paterlini, M., Zakharenko, S.S., Lai, W.S., Qin, J., Zhang, H., Mukai, J., Westphal, K.G., Olivier, B., Sulzer, D., Pavlidis, P., et al. (2005). Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat. Neurosci. 8, 1586-1594. https://doi.org/10.1038/nn1562
  64. Phang, J.M., Liu, W., and Hancock, C. (2013). Bridging epigenetics and metabolism: role of non-essential amino acids. Epigenetics 8, 231-236. https://doi.org/10.4161/epi.24042
  65. Poewe, W., Seppi, K., Tanner, C.M., Halliday, G.M., Brundin, P., Volkmann, J., Schrag, A.E., and Lang, A.E. (2017). Parkinson disease. Nat. Rev. Dis. Primers 3, 17013. https://doi.org/10.1038/nrdp.2017.13
  66. Querfurth, H.W. and LaFerla, F.M. (2010). Alzheimer's disease. N. Engl. J. Med. 362, 329-344. https://doi.org/10.1056/NEJMra0909142
  67. Rohrbough, J., Rushton, E., Palanker, L., Woodruff, E., Matthies, H.J., Acharya, U., Acharya, J.K., and Broadie, K. (2004). Ceramidase regulates synaptic vesicle exocytosis and trafficking. J. Neurosci. 24, 7789-7803. https://doi.org/10.1523/JNEUROSCI.1146-04.2004
  68. Savio, L.E.B., Vuaden, F.C., Piato, A.L., Bonan, C.D., and Wyse, A.T.S. (2012). Behavioral changes induced by long-term proline exposure are reversed by antipsychotics in zebrafish. Prog. Neuropsychopharmacol. Biol. Psychiatry 36, 258-263. https://doi.org/10.1016/j.pnpbp.2011.10.002
  69. Shankar, G.M., Bloodgood, B.L., Townsend, M., Walsh, D.M., Selkoe, D.J., and Sabatini, B.L. (2007). Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci. 27, 2866-2875. https://doi.org/10.1523/JNEUROSCI.4970-06.2007
  70. Solana, C., Pereira, D., and Tarazona, R. (2018). Early senescence and leukocyte telomere shortening in SCHIZOPHRENIA: a role for cytomegalovirus infection? Brain Sci. 8, 188. https://doi.org/10.3390/brainsci8100188
  71. Sreedharan, J., Blair, I.P., Tripathi, V.B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J.C., Williams, K.L., Buratti, E., et al. (2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668-1672. https://doi.org/10.1126/science.1154584
  72. Srivastava, R., Faust, T., Ramos, A., Ishizuka, K., and Sawa, A. (2018). Dynamic changes of the mitochondria in psychiatric illnesses: new mechanistic insights from human neuronal models. Biol. Psychiatry 83, 751-760. https://doi.org/10.1016/j.biopsych.2018.01.007
  73. Steinlin, M., Boltshauser, E., Steinmann, B., Wichmann, W., and Niemeyer, G. (1989). Hyperprolinaemia type I and white matter disease: coincidence or causal relationship? Eur. J. Pediatr. 149, 40-42. https://doi.org/10.1007/BF02024332
  74. Stokin, G.B. and Goldstein, L.S. (2006). Axonal transport and Alzheimer's disease. Annu. Rev. Biochem. 75, 607-627. https://doi.org/10.1146/annurev.biochem.75.103004.142637
  75. Surmeier, D.J. (2007). Calcium, ageing, and neuronal vulnerability in Parkinson's disease. Lancet Neurol. 6, 933-938. https://doi.org/10.1016/S1474-4422(07)70246-6
  76. Sweeney, M.D., Zhao, Z., Montagne, A., Nelson, A.R., and Zlokovic, B.V. (2019). Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21-78. https://doi.org/10.1152/physrev.00050.2017
  77. Szabados, L. and Savoure, A. (2010). Proline: a multifunctional amino acid. Trends Plant Sci. 15, 89-97. https://doi.org/10.1016/j.tplants.2009.11.009
  78. Tang, H. and Pang, S. (2016). Proline catabolism modulates innate immunity in Caenorhabditis elegans. Cell Rep. 17, 2837-2844. https://doi.org/10.1016/j.celrep.2016.11.038
  79. Travagli, R.A., Browning, K.N., and Camilleri, M. (2020). Parkinson disease and the gut: new insights into pathogenesis and clinical relevance. Nat. Rev. Gastroenterol. Hepatol. 17, 673-685. https://doi.org/10.1038/s41575-020-0339-z
  80. Uno, Y. and Coyle, J.T. (2019). Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 73, 204-215. https://doi.org/10.1111/pcn.12823
  81. Verkhratsky, A. and Parpura, V. (2014). Neurological and psychiatric disorders as a neuroglial failure. Period. Biol. 116, 115-124.
  82. Wang, R., Dillon, C.P., Shi, L.Z., Milasta, S., Carter, R., Finkelstein, D., McCormick, L.L., Fitzgerald, P., Chi, H., Munger, J., et al. (2011). The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871-882. https://doi.org/10.1016/j.immuni.2011.09.021
  83. Wondrak, G.T., Jacobson, M.K., and Jacobson, E.L. (2005). Identification of quenchers of photoexcited States as novel agents for skin photoprotection. J. Pharmacol. Exp. Ther. 312, 482-491. https://doi.org/10.1124/jpet.104.075101
  84. Xie, K., Qin, Q., Long, Z., Yang, Y., Peng, C., Xi, C., Li, L., Wu, Z., Daria, V., Zhao, Y., et al. (2021). High-throughput metabolomics for discovering potential biomarkers and identifying metabolic mechanisms in aging and Alzheimer's disease. Front. Cell Dev. Biol. 9, 602887. https://doi.org/10.3389/fcell.2021.602887
  85. Zarse, K., Schmeisser, S., Groth, M., Priebe, S., Beuster, G., Kuhlow, D., Guthke, R., Platzer, M., Kahn, C.R., and Ristow, M. (2012). Impaired insulin/ IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab. 15, 451-465. https://doi.org/10.1016/j.cmet.2012.02.013
  86. Zielke, H.R., Zielke, C.L., and Baab, P.J. (2009). Direct measurement of oxidative metabolism in the living brain by microdialysis: a review. J. Neurochem. 109 Suppl 1, 24-29. https://doi.org/10.1111/j.1471-4159.2009.05941.x
  87. Zou, W., Liu, X., Yue, P., Khuri, F.R., and Sun, S.Y. (2007). PPARgamma ligands enhance TRAIL-induced apoptosis through DR5 upregulation and c-FLIP downregulation in human lung cancer cells. Cancer Biol. Ther. 6, 99-106. https://doi.org/10.4161/cbt.6.1.3555