DOI QR코드

DOI QR Code

순차 컨벡스 프로그래밍 기반 무인기 설계 형상의 성능 분석

Sequential Convex Programming Based Performance Analysis of UAV Design

  • 투고 : 2022.05.12
  • 심사 : 2022.08.19
  • 발행 : 2022.11.01

초록

순차 컨벡스 최적화 기법을 사용한 궤적 최적화로 무인기 기초 설계 형상의 성능 분석을 수행했다. 외부 공력 모델로 설계한 비선형 궤적 최적화 문제는 볼록화와 이산화를 통해 2차 원뿔 프로그램 문제로 근사 되었다. 알고리즘의 성능 향상을 위해 제약조건을 완화한 문제의 해를 초기 궤적으로 사용했다. 근사해의 반복적인 탐색으로 하강 궤적 최적화 문제들을 분석했으며 설계 형상의 구동부 성능에 따른 최대 도달 속도를 비교했다.

Sequential convex programming based performance analysis of the designed UAV is performed. The nonlinear optimization problems generated by aerodynamics are approximated to socond order program by discretization and convexification. To improve the performance of the algorithm, the solution of the relaxed problem is used as the initial trajectory. Dive trajectory optimization problem is analyzed through iterative solution procedure of approximated problem. Finally, the maximum final velocity according to the performance of the actuator model was compared.

키워드

과제정보

이 연구는 LIG Nex1 산학협력과제 지원으로 연구되었음

참고문헌

  1. Chamola, V., et al, "A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques," Ad hoc networks, Vol. 111, 2021, 102324. https://doi.org/10.1016/j.adhoc.2020.102324
  2. Betts, J. T., "Survey of Numerical Methods for Trajectory Optimization," Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998, pp. 193~207. https://doi.org/10.2514/2.4231
  3. Wang, Z. and Michael, J. G., "Constrained trajectory optimization for planetary entry via sequential convex programming," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2603~2615. https://doi.org/10.2514/1.G002150
  4. Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge University Press, Cambridge, England, U.K., 2004, pp. 127~187.
  5. XFLR5 : http://www.xflr5.tech/xflr5.htm
  6. Ko, H. S. and Choi, H. L., "Configuration Design and Performance Analysis of Drone for SEAD mission," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, November 2021, pp. 1012~1013.
  7. Szmuk, M., Behcet, A. and Andrew, W. B., "Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints," AIAA Guidance, Navigation, and Control Conference, January 2016, pp. 378~393.
  8. Nocedal, J. and Wright, S. J., Numerical optimization, Springer Verlag, 1999, pp. 510~513.
  9. Wang, Z. and Ye, L., "Improved sequential convex programming algorithms for entry trajectory optimization," Journal of Spacecraft and Rockets, Vol. 57, No. 6, 2020, pp. 1373~1386. https://doi.org/10.2514/1.A34640
  10. Roh, H. K., et al, "L1 Penalized Sequential Convex Programming for Fast Trajectory Optimization: With Application to Optimal Missile Guidance," International Journal of Aeronautical and Space Sciences, Vol. 21, No. 2, 2020, pp. 493~503. https://doi.org/10.1007/s42405-019-00230-0
  11. Liu, X., Zuojun, S. and Ping, L., "Entry trajectory optimization by second-order cone programming," Journal of Guidance, Control, and Dynamics, Vol. 39, No 2, 2016, pp. 227~241. https://doi.org/10.2514/1.G001210