DOI QR코드

DOI QR Code

토석류의 토사체적농도에 따른 퇴적 특성 변화에 관한 실험 연구

The Experimental Study for Variance of Depositation Due to Sediment Volume Concentration of Debris Flow

  • 최영도 (충북대학교 토목공학과) ;
  • 김성덕 (청주대학교 휴먼환경디자인학부) ;
  • 이호진 (충북대학교 토목공학부)
  • Choi, Youngdo (School of Civil Engineering, Chungbuk National University) ;
  • Kim, Sungduk (Division of Human&Environmental Design, Cheongju University) ;
  • Lee, Hojin (School of Civil Engineering, Chungbuk National University)
  • 투고 : 2022.09.13
  • 심사 : 2022.09.20
  • 발행 : 2022.09.30

초록

본 연구의 목적은 산지 사면에서 토석류가 발생했을 때, 하류에서 토사퇴적면적과 도달거리를 실험을 통해 조사한 것이다. 하류에 퇴적하는 토사의 특성을 분석하기 위하여 수로사면에 소단을 설치하였을 경우 또는 직선 수로인 경우 토사퇴적면적과 도달거리를 실험을 통해 분석하였다. 실험조건으로서는 토사체적농도의 변화 및 수로의 경사변화 그리고 수로의 형태에 따라서 토사퇴적면적과 도달거리의 감소율을 조사하였다. 직선수로에서 수로경사가 급할수록 그리고 토사퇴적농도가 감소할수록 토사퇴적면적과 도달거리는 증가하였다. 소단을 갖는 수로에서는 경사가 급할수록 토사퇴적농도가 감소할수록 도달거리 및 토사퇴적농도가 증가하였다. 두 수로에서 토사퇴적면적과 도달거리의 차단율을 비교해보면, 소단을 갖는 수로에서 직선수로인 경우보다 토사퇴적면적과 도달거리의 차단율이 더 높았다. 본 연구의 결과는 급경사지 비탈면에서 토석류가 발생했을 때 효율적인 토석류 저감 또는 방어 대책을 세워 토석류에 의한 피해를 줄이는 데 정보를 제공할 것이다.

The purpose of this study is to investigate the sedimentation area and runout distance in the downstream when debris flow occurred on a mountain slope through an experimental performance. Super typhoons and torrential rains caused by climate change cause large-scale debris flow disasters in the downstream areas of mountainous areas, mainly where sediments are deposited and flowed downstream. To analyze the characteristics of the sediment deposited downstream, the disposition area and runout distance were investigated through experiments in the case of a straight channel and channel with berm, respectively. As experimental conditions, changes in sediment volume concentration and channel slope, and channel with or without berm, reduction rates in sedimentation area and runout distance were investigated. In the straight channel, the steeper the channel slope and the lower the sedimentation concentration, the sedimentation area and runout distnace were increased. In a channel with berm, the runout distance and sediment area increased as the slope became steeper and the sediment area decreased.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2021R1l1A3054408).

참고문헌

  1. Chen, H., Dadson, S., and Chi, Y. G. (2006). Recent Rainfallinduced Landslides and Debris Flow in Northern Taiwan. Geomorphology. 77: 112-125. https://doi.org/10.1016/j.geomorph.2006.01.002
  2. Choi, Y. D. (2022). Effect of Berms and Baffles on Deposition Characteristics of Debris Flow. Master Thesis. Chungbuk National University.
  3. Costa, J. E. (1984). Physical Geomorphology of Debris Flows. In: Costa, J.E., Fleisher, P.J. (eds) Developments and Applications of Geomorphology. Springer, Berlin, Heidelberg. 268-317.
  4. Costa, J. E. (1988). Rheologic, Geomorphic, and Sedimentologic Differentiation of Water Floods, Hyperconcentrated Flows, and Debris Flows. Flood Geomorphology. 113-122.
  5. Crosta, G. B. (2001). Failure and Flow Development of a Complex Slide: The 1993 Sesa, Landslide. Engineering Geology. 53: 173-199. https://doi.org/10.1016/S0013-7952(00)00073-9
  6. D'Agostino, V., Cesca, M., and Marchi, L. (2010). Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps). Geomorphology. 115(3): 294-304. https://doi.org/10.1016/j.geomorph.2009.06.032
  7. D'Agostino, V., Bettella, F., and Cesca, M. (2013). Basal Shear Stress of Debris Flow in the Runout Phase. Geomorphology. 201: 272-280. https://doi.org/10.1016/j.geomorph.2013.07.001
  8. Fairfield, G. (2011). Assessing the Dynamic Influences of Slope Angle and Sediment Composition on Debris Flow Behaviour: An Experimental Approach. Masters Thesis. Durham University.
  9. Iverson, R. M. (2014). Debris Flows: Behaviour and Hazard Assessment. Geology Today. 30(1): 15-20. https://doi.org/10.1111/gto.12037
  10. Iverson, R. M., Reid, M. E., Logan, M., LaHusen, R. G., Godt, J. W., and Griswold, J. P. (2011). Positive Feedback and Momentum Growth during Debris-flow Entrapment of Wet Bed Sediments. Nature Geoscience. 4(2): 116-121. https://doi.org/10.1038/ngeo1040
  11. Kim, S. D. (2014). The Study of Sediment Volume Concentration in Liquefied-layer of Debris Flow. Journal of the Korean Geo-Environmental Society. 15(12): 109-206. https://doi.org/10.14481/jkges.2014.15.12.109
  12. Lee, C. J. and Yoo, N. J. (2009). A Study on Debris Flow Landslide Disasters and Restoration at Inje of Kanwon Province, Korea. Journal of the Korean Society of Hazard Mitigation. 9(1): 99-105.
  13. Lee, H. N. and Kim, G. H. (2020). Analysis of Topographical Factors in Woomyun Mountain Debris Flow using GIS. Journal of the Korean Society of Industry Convergence. 23(5): 809-815. https://doi.org/10.21289/KSIC.2020.23.5.809
  14. Lee, Y. S., Ryu, S. H., and Jung, J. H. (2011). Result of Debris Flow Model Experiment under Rainy Condition. 2011 Korean Geo-Environmental Society Fall Conference. 215-218.
  15. McDougall, T., Donley, H. F., and Howard, T. R. (2003). On Debris Flow/Avalanche California, in Debris Flows/ Avalanches: Process, Recognition and Mitigation. Reviews in Engineering Geology, Geol. Soc. AM. VII. 223-236.
  16. Nakatani, K., Wada, T., Satofuka, Y., and Mizuyama, T. (2008). Development of "Kanko 2D (Ver. 2.00)", a User-friendly One and Two-dimensional Debris Flow Simulator Equipped with a Graphical User Interface. International Journal of Erosion Control Engineering. 1(2): 62-72. https://doi.org/10.13101/ijece.1.62
  17. Proske, D., Suda, J., and Hubl, J. (2011). Debris Flow Impact Estimation for Breakers. Georisk: Assessment and Management of Risk for Engineered Systems and Geo hazards. 5(2): 143-155. https://doi.org/10.1080/17499518.2010.516227
  18. Ryou, K. H. (2020). Analysis of Debirs Flow Behavior Characteristics by Using Flume Experiments. Master Thesis. Chungbuk National University.
  19. Ryou, K. H., Chang, H. J., and Lee, H. J. (2021). A Study on the Flow Characteristics of Debris Flow Using Small-scaled Laboratory Test. Journal of the Korea Academia-Industrial Cooperation Society. 22(4): 235-245. https://doi.org/10.5762/KAIS.2021.22.4.235