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Summary 
In the age of smartphones, users accomplish their daily tasks using 
their smartphones due to the significant growth in smartphone 
technology. Due to these tremendous expansions, attackers are 
highly motivated to penetrate numerous mobile marketplaces with 
their developed malicious apps. Android has the biggest 
proportion of the overall market share when compared to other 
platforms including Windows, iOS, and Blackberry. This research 
will discuss the Android security features, vulnerabilities and 
threats, in addition to some existing protection mechanisms. 
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1. Introduction 

Android is a mobile operating system that was created 
with complete open-source development. The android 
platform should have a strong security system to ensure the 
security of user applications, information, and data. A 
strong and strict security architecture is needed to ensure 
security for open-source platforms such as Android [1]. The 
Android platform's architecture is created with multilayered 
security providing the needed flexibility for an open-source 
platform. As mobile devices are becoming more popular 
among users, security and privacy are also becoming a 
concern for smartphone users. Moreover, the rapid increase 
in the number of Android apps makes it challenging for app 
marketplaces, like Google App Store, to verify whether an 
application is malicious or legitimate. Additionally, since 
Android OS is an open-source platform and therefore is 
transparent to the public, vulnerabilities are easily exploited 
by cybercriminals. Numerous security layers of the Android 
operating system, including the framework layer, 
application layer, and even the Linux kernel layer, are 
susceptible to many Android vulnerabilities [2]. Benign or 
malicious apps are vulnerable because of unexpected design 
flaws or coding errors. Although Android contains powerful 
security features, many security threats exist, like Denial-
of-Service attacks, repackaging apps, permission escalation, 
and unauthorized access between application services [3]. 
The objective of this research is focused on expanding the 
coverage of Android security features and threats, and in 
addition to the existing protection techniques. 

 
2. Android Security Architecture 
 

Android incorporated many security mechanisms to 
protect user’s data and system’s resources, aiming to 
become the most secure and convenient mobile operating 
system available in the market [1]. To accomplish that goal, 
Google (Android owner) offers the following security 
features which will be discussed in depth throughout the 
research: 
 Robust OS security through the Linux kernel  
 User permissions 
 App signing  
 Sandboxed operating system 
 Secure communication barriers 
 

Before discussing the security features of Android, Fig. 
1 provides a visualization of how security features are 
distributed throughout the Android security architecture [1]. 
The fundamental goal of memory space protection in the 
Linux kernel is to stop an operation from accessing memory 
without the required access permissions. Without memory 
protection, memory segments like code and data segments 
are susceptible to code injection attacks and flaws that are 
related to memory. By utilizing disk encryption, files are 
always kept on disk in an encrypted state. The application 
sandbox imposes restrictions on all processes that are run 
above the Linux kernel. The Android platform uses Linux 
user-based protection in the libraries to isolate application 
resources, unlike other operating systems in which multiple 
apps run with the same user permissions [3]. The whole 
Android operating system is built on top of the Linux kernel 
which is the heart of the Android architecture. It supports 
the running process of applications by managing all the 
available drivers needed during the runtime. The libraries' 
purpose is to support application development. It consists of 
the needed requirements to build an app, including the 
Android manifest and the source code. The application 
framework provides a broad abstraction for accessing the 
hardware and allows easier user interface management with 
the resources of the applications. In each layer of the 
architecture, there are certain security features dedicated to 
supporting the security needs of that specific layer. Some of 
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these features are going to be discussed throughout the 
research. 
 

  

Fig. 1 Android security architecture 

3. Android Security Features 

The security of the Android operating system is based 
on the following key security features: 

3.1 App Sandbox 

Users can execute applications or open files in a 
sandbox, an isolated testing environment, without having 
their application, system, or platform affected. Android 
does this by giving every Android app a distinct user ID 
(UID) and running each one in a separate process. This UID 
is used by Android to create a kernel-level app sandbox [4]. 
As demonstrated in Fig. 2, an Android app's code is 
performed in a sandbox while executing. An app runs 
separately from the rest of the system and is unable to access 
the memory of other apps. The only method an app can 
access memory is using an inter-process communication 
mechanism which is one of the protection mechanisms 
provided by Android platforms. This is to prevent malicious 
apps from accessing other apps’ data [9]. 

 

Fig. 2 Two sandboxed Android applications interacting with each other 
and with the Android API 

3.2 Security-Enhanced Linux in Android 

Android uses Security-Enhanced Linux (SELinux) as 
part of its security model to apply mandatory access control 
(MAC) on all processes, even those that have root 
capabilities. The SELinux feature in Android was supported 
by numerous businesses and organizations. With the help of 
SELinux, Android may more effectively secure system 
services, limit access to application data and system logs, 
and mitigate the consequences of malicious 
software. SELinux functions on the principle of implicit 
deny, which is if the access is not allowed explicitly, then 
deny it. It operates in two modes [10]: 
 Permissive mode, logs permission denials but does not 

take any enforcement action. 
 Enforcing mode, both logs and enforces permissions 

denials. 
SELinux in Android operates in enforcing mode along with 
a security policy that works through the Android Open-
Source Project (AOSP). 

3.3 Trusty Trusted Execution Environment (TEE) 

Trusty is a secure Operating System (OS) that runs on the 
same Android processor but is separated from the rest of the 
system. Trusty can have full access to the device’s main 
processor and memory but is isolated completely. By 
running inside a TEE, malicious apps are unable to exploit 
the OS and cannot reach the central processing unit without 
direct permission [8]. Fig. 3 shows the isolation of the 
trusted OS and the Android OS. 
 

 

Fig. 3 Trusty Trusted Execution Environment (TEE) 
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3.4 App Signing 

Application signing enables developers to disclose the 
identity of the application's developer and to update their 
software without having to create complex permissions. 
The developer must sign each Android application before it 
is deployed. Otherwise, the application will be rejected. The 
user ID associated with each program is specified in the 
signed application certificate in which different user IDs run 
different apps. Application signing protects one app from 
accessing another app except through inter-process 
communication. Application signing on Google Play serves  

as a link between Google's trust in the developer and the 
developer's trust in their application. Developers are aware 
that their software is delivered to the Android device 
unmodified [2]. 

3.5 Verified Boot 

Verified Boot is designed to make sure that all executed 
code originates from a reliable source often from the 
original equipment manufacturer rather than from a 
malicious source. The verified boot uses a device mapper, 
which verifies the integrity of each device block. Fig. 4 
shows how the device mapper uses a cryptographic hash 
tree to ensure the integrity of each block. Each node 
represents a cryptographic hash. The leaf nodes represent 
the hashes of the device blocks, intermediate nodes 
represent the hashes of their child nodes. The root node is 
known as the root hash, it is the sum of all hashes in the 
below levels. Any change made in a single device block will 
change the root hash value [7]. 
 

 

Fig. 4 Cryptographic hash tree 

4. Android Security Issues 

Android has a strong protection mechanism facing Android 
security issues, which is the application permissions system. 
The security of the Android operating system is designed as 
a permission-based approach that monitors and controls the 
authorization of third-party Android apps to access vital 
resources. This entails limiting third-party Android 
applications' access to crucial system resources on an 

Android device. Users should approve a set of permissions 
an application asks for, before downloading the application. 
This procedure aims to alert users to the potential risks 
associated with downloading and using the application on 
their device. However, even when the permissions system 
is carefully understood and clear, users frequently lack 
sufficient knowledge of the threat, which lead to them 
placing their trust in either the app store or the application's 
level of popularity, and accepting the installation without 
attempting to understand the developer's intentions. End 
users, marketers, and developers have strongly criticized 
this permission-based approach for the ineffective 
administration of permissions [3]. In this section, an 
overview of the Android permissions system is discussed, 
followed by the main security issues of Android. 
 
4.1 Android Permissions Levels 
 

Users can execute applications or open files in a sandbox, 
as the <uses-permission> tag found in the 
AndroidManifest.xml is used by the developer to specify 
the permissions. The restrictions are established at the time 
of the App installation. Android permissions fall under the 
various access levels listed in Table 1. Users, system 
programs, or devices are not seriously threatened by normal 
permissions [11]. They are automatically granted when the 
application is being installed and can be modified later from 
the settings of the application. The dangerous permissions, 
on the other hand, is risky as the device's sensitive APIs and 
private data can be accessed through these permissions [3]. 
For signature-based permissions, two applications need to 
be signed by the same certificate. 

Table 1: Classification of Android permissions levels 
 Levels 

Normal 
Permissions 

Dangerous 
permissions 

Signature-
based 

permissions 
 For the user, 

system programs, 
or device, these 

permissions pose 
the minimum risk. 

They are 
automatically 

granted when the 
software is being 

installed. From the 
application 

settings, they can 
be modified later.

These 
permissions fall 
under the serious 

risk category 
because they can 

access the 
device's 

sensitive APIs 
and personal 
information. 
During the 
installation 
process, the 

user's permission 
is requested. 

These 
permissions are 
only given if the 
requesting app's 

signature 
matches that of 
the application 

maker's 
certificate. 
During the 
installation 

process, they 
are implicitly 

granted. 

 ACCESS_WIFI_S
TATE, 

BLUETOOTH, 
SET ALARM, 

LOCATION, 
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APP 
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CERTIFICATE
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MODIFY_AUDIO
_SETTINGS 

 

4.2 Permissions Threat Examples 

Android permissions, despite being intended to safeguard 
users and can threaten a device's resources and data.  The 
following are some examples of how the most popular 
Android permissions can be exploited [3]: 
 
 
 
 ACCESS_WIFI_STATE 
Apps can access Wi-Fi network data, including the list of 
configured networks and the active network, with this 
permission. Browser and communication apps request this 
permission. It can be exploited if attackers use device bugs 
to obtain Wi-Fi passwords and hack into the networks the 
user access regularly. 
 
 MODIFY / DELETE SD CARDS 
Apps can write to external storage, including SD cards, 
when this permission is given. This Android permission is 
typically needed by apps for cameras, documents, audio, 
and video. Attackers exploit this permission by deleting 
files or photos on the SD card.  
 
 SEND_SMS 
This permission is required by social media and 
communications applications, to grant these applications to 
send text messages. Attackers can use it to send messages 
to premium numbers, which leaves users with unexpected 
charges. 

4.3 Android Security Levels 

This section describes in detail the user and device security 
concerns. Google regularly releases security patches to 
resolve bugs and enhance device security, but malware 
developers continue to develop detection obfuscation 
mechanisms. The first step in dealing with a security bug is 
determining the severity of the bug and its consequences if 
it is exploited. The severity level assists researchers and 
security teams in prioritizing the issue so that the necessary 
bug fixes are deployed to users [6].  The severity levels 
along with their consequences are described in Table 2: 

Table 2: Severity levels 
Severity 

levels 
Description Consequences 

 
 
 
 
 

 
Critical 

level 

This is the most critical 
severity level, and it 

needs to be fixed 
immediately to keep the 

device secure. 

 Remote boot bypass
 Remote code 

execution 
 Remote data wipe 

 Remote DoS 
attacks 

 Unauthorized data 
access 

 
 

 
 

High level

Bugs in this category are 
less critical than high-

level ones but can lead to 
severe risk when 

exploited. 

 Remote script 
execution 

 Bypassing the lock 
screen 

 Exploitation of 
cryptographic 
vulnerabilities 

 Remote 
ransomware attack 

 
 
 
 
 
 

 
Medium 

level 

Compared to critical-
level and high-level 

defects, these bugs are 
less dangerous, but they 
still have the potential to 

corrupt device data. 

 Bypassing the root 
permissions 

 Local script 
execution 

 Local code 
injection 

 Bypassing Wi-Fi 
encryption 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Low level 

Bugs in this category do 
not harm the devices 
much. However, they 

must be properly patched 
to secure device data. 

 Removing user 
applications. 

 Random pop-up 
notifications for 
spam 

 Unexpected 
application 
termination 

4.4 Android Attacks 

The percentages of Android attacks were extremely high in 
2019-2020 [1]. These vulnerabilities are dangerous to 
device security, and their exploitation may result in data 
loss, including sensitive user data. This section describes 
popular significant malicious attacks and their 
consequences. The consequences of these attacks can range 
from minor data loss to significant financial loss [2]. 
 
 Collusion Attack 
 

A significant threat to Android-based devices is application 
collusion. App collusion occurs when two or more 
applications work together in some way to commit a 
malicious activity that would be impossible to be carried out 
independently. In other words, two or more applications 
collude to establish malicious activity. Each of the 
participating apps communicates with one another via 
legitimate communication channels to carry out the tasks 
assigned to each. Apps are not required to violate any 
security frameworks or exploit security weaknesses to carry 
out malicious activity [11]. 
Consequences: malicious activities and malware will be 
hidden since current anti-malware solutions are incapable 
of analyzing multiple apps at the same time. 
 
 Privilege Escalation 

 

Privilege escalation attacks target kernel-level security 
flaws to gain device root privileges. The attacker can 
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intercept publicly available device modules to gain access 
to vital permissions. Such attacks may emerge from 
unauthorized actions carried out by apps with more rights 
than needed, which could expose users to a great deal of 
sensitive data [3]. 
Consequence: remote access to root-level privileges might 
lead to full control of the Android operating system. 
 
 Repackaging Apps 

 

Using reverse engineering techniques, repackaging is 
carried out by injecting harmful code into the source code 
and decompiling/disassembling .apk files. Malicious code 
can be hidden by employing repackaging techniques to 
seem like normal software. Repackaged apps are typically 
corrupted variations of well-known apps. Reverse 
engineering is used by attackers to download popular 
Android apps, extract the source code, add their own 
malicious code, repackage the program, and then publish it. 
Various tools are used to obtain Java code like undx and 
dex2jar [5]. 
Consequence: attackers will release their repacked 
application through an unofficial market and as a result 
users fall prey to it. 
 
 Denial of Service Attack 
 

The expansion of DoS attacks has been accelerated by the 
increasing number of mobile devices connected to the 
Internet to form a large network. This attack occurs when a 
program fills up all the resources, such as memory, battery 
life, and bandwidth, preventing unauthorized users from 
carrying out their functions [4]. 
Consequence: unavailability of services to authorized users. 
 

4.5 Real-life Attack Example 

The following attack was discovered in a banking 
application in South Korea, where a user performs a few 
steps to transfer money using an Android banking 
application [5]. During a repackaging attack, the following 
steps are taken: 
(1) Attacker installs the banking application. 
(2) Modify and decompile the application with the 

attacker’s self-sign. Attackers use reverse engineering 
processes by decompiling the DEX file into different 
source codes like Java as shown in Fig. 5. 

(3) Publish the application as forgery to the third-party 
market or Android market. 

(4) Normal users install the forged banking application. 

(5) Use financial transfer services. 
(6) Transfer the money to the attacker’s account without 

awareness. 

Fig. 5 Application decompiling 

4.6 Repackaging Attack Protection Mechanisms 

 Self-Signing Restriction 

Self-signing policy prevention is one of the protection 
mechanisms against repackaging attacks. The simplest way 
to accomplish this is to switch app signing from self-signing 
to market signing and prohibit app distribution without the 
market's signature. Although this effectively eliminates 
repackaging attacks, it would violate Android's open policy 
[5]. 
 

 Code Obfuscation 

Code obfuscation is a mechanism used to make it more 
challenging to reverse engineer source code or machine 
code. The default tool used for the obfuscation of the Java 
source code is called ProGuard. Obfuscation is supported 
by ProGuard by converting method names, class names, and 
variable names into meaningless, randomized strings [4][5]. 
 

 Code Attestation 
 

Code is attested by the authority before performing a money 
transfer from the user's application to the banking server. A 
Trusted Platform Module (TPM) provides a stronger 
security mechanism supporting code attestation. TPM 
enables secure booting of the operating system [5]. 

5. Conclusion 

Alongside the rapid growth of Android system usage 
and the number of Android applications, malicious 
activities are exponentially growing as well. Although there 
exists a strong Android security system, threats and 
vulnerabilities exploit the security system’s weakness in 
order to allow attackers access and control the system 
resources. In this research, key Android security features 
and protection mechanisms have been discussed, along with 
its related security issues to control, prevent, or mitigate 
future threats aiming for a more robust and secure system. 
 
References  
[1] Ibne, T., & Alam, L. (2016, March 17). Android Security 

Vulnerabilities Due to User Unawareness and Frameworks 
for Overcoming Those Vulnerabilities. International Journal 
of Computer Applications, 137(1), 14–21. 
https://doi.org/10.5120/ijca2016908649 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.11, November 2022 

 

372

 

[2] Ahmed, O., & Sallow, A. (2017). Android Security: A Review. 
Academic Journal of Nawroz University, 6(3), 135–140. 
https://doi.org/10.25007/ajnu.v6n3a99 

[3] Alshehri, A., Hewins, A., McCulley, M., Alshahrani, H., Fu, 
H., & Zhu, Y. (2017). Risks behind Device Information 
Permissions in Android OS. Communications and Network, 
09(04), 219–234. https://doi.org/10.4236/cn.2017.94016 

[4] Bahman Rashidi, & Carol Fung. (2015, January 1). A Survey 
of Android Security Threats and Defenses. J. Wirel. Mob. 
Networks Ubiquitous Comput. Dependable Appl., 6, 3–35. 
https://doi.org/10.22667/JOWUA.2015.09.31.003 

[5] Jung, J. H., Kim, J. Y., Lee, H. C., & Yi, J. H. (2013, June 14). 
Repackaging Attack on Android Banking Applications and Its 
Countermeasures. Wireless Personal Communications, 73(4), 
1421–1437. https://doi.org/10.1007/s11277-013-1258-x 

[6] Li, J., Sun, L., Yan, Q., Li, Z., Srisa-an, W., & Ye, H. (2018, 
July). Significant Permission Identification for Machine-
Learning-Based Android Malware Detection. IEEE 
Transactions on Industrial Informatics, 14(7), 3216–3225. 
https://doi.org/10.1109/tii.2017.2789219 

[7] Johnstone, M. N., Baig, Z., Hannay, P., Carpene, C., & Feroze, 
M. (2016). Controlled Android Application Execution for the 
IoT Infrastructure. Internet of Things. IoT Infrastructures, 16–
26. https://doi.org/10.1007/978-3-319-47063-4_2 

[8] Sabt, M., Achemlal, M., & Bouabdallah, A. (2015, August). 
Trusted Execution Environment: What It is, and What It is Not. 
2015 IEEE Trustcom/BigDataSE/ISPA. 
https://doi.org/10.1109/trustcom.2015.357 

[9] Spolaor, R., Abudahi, L., Moonsamy, V., Conti, M., & 
Poovendran, R. (2017). No Free Charge Theorem: A Covert 
Channel via USB Charging Cable on Mobile Devices. Applied 
Cryptography and Network Security, 83–102. 
https://doi.org/10.1007/978-3-319-61204-1_5 

[10] Building SELinux Policy  |. (n.d.). Android Open Source 
Project. Retrieved October 22, 2022, from 
https://source.android.com/docs/security/features/selinux/buil
d 

[11] Karthick, S., & Binu, S. (2017, February). Android security 
issues and solutions. 2017 International Conference on 
Innovative Mechanisms for Industry Applications (ICIMIA). 
https://doi.org/10.1109/icimia.2017.7975551 




