
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.11, November 2022

367

Manuscript received November 5, 2022
Manuscript revised November 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.11.53

Android Operating System: Security Features, Vulnerabilities, and
Protection Mechanisms

Lulwa Abdulmajeed AlJeraisy1 and Arwa Alsultan2
443203455@student.ksu.edu.sa afalsultan@ksu.edu.sa

Cybersecurity Department, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia

Summary
In the age of smartphones, users accomplish their daily tasks using
their smartphones due to the significant growth in smartphone
technology. Due to these tremendous expansions, attackers are
highly motivated to penetrate numerous mobile marketplaces with
their developed malicious apps. Android has the biggest
proportion of the overall market share when compared to other
platforms including Windows, iOS, and Blackberry. This research
will discuss the Android security features, vulnerabilities and
threats, in addition to some existing protection mechanisms.
Keywords:
Android architecture, Android permissions, Android security,
Vulnerabilities.

1. Introduction

Android is a mobile operating system that was created
with complete open-source development. The android
platform should have a strong security system to ensure the
security of user applications, information, and data. A
strong and strict security architecture is needed to ensure
security for open-source platforms such as Android [1]. The
Android platform's architecture is created with multilayered
security providing the needed flexibility for an open-source
platform. As mobile devices are becoming more popular
among users, security and privacy are also becoming a
concern for smartphone users. Moreover, the rapid increase
in the number of Android apps makes it challenging for app
marketplaces, like Google App Store, to verify whether an
application is malicious or legitimate. Additionally, since
Android OS is an open-source platform and therefore is
transparent to the public, vulnerabilities are easily exploited
by cybercriminals. Numerous security layers of the Android
operating system, including the framework layer,
application layer, and even the Linux kernel layer, are
susceptible to many Android vulnerabilities [2]. Benign or
malicious apps are vulnerable because of unexpected design
flaws or coding errors. Although Android contains powerful
security features, many security threats exist, like Denial-
of-Service attacks, repackaging apps, permission escalation,
and unauthorized access between application services [3].
The objective of this research is focused on expanding the
coverage of Android security features and threats, and in
addition to the existing protection techniques.

2. Android Security Architecture

Android incorporated many security mechanisms to
protect user’s data and system’s resources, aiming to
become the most secure and convenient mobile operating
system available in the market [1]. To accomplish that goal,
Google (Android owner) offers the following security
features which will be discussed in depth throughout the
research:
 Robust OS security through the Linux kernel
 User permissions
 App signing
 Sandboxed operating system
 Secure communication barriers

Before discussing the security features of Android, Fig.
1 provides a visualization of how security features are
distributed throughout the Android security architecture [1].
The fundamental goal of memory space protection in the
Linux kernel is to stop an operation from accessing memory
without the required access permissions. Without memory
protection, memory segments like code and data segments
are susceptible to code injection attacks and flaws that are
related to memory. By utilizing disk encryption, files are
always kept on disk in an encrypted state. The application
sandbox imposes restrictions on all processes that are run
above the Linux kernel. The Android platform uses Linux
user-based protection in the libraries to isolate application
resources, unlike other operating systems in which multiple
apps run with the same user permissions [3]. The whole
Android operating system is built on top of the Linux kernel
which is the heart of the Android architecture. It supports
the running process of applications by managing all the
available drivers needed during the runtime. The libraries'
purpose is to support application development. It consists of
the needed requirements to build an app, including the
Android manifest and the source code. The application
framework provides a broad abstraction for accessing the
hardware and allows easier user interface management with
the resources of the applications. In each layer of the
architecture, there are certain security features dedicated to
supporting the security needs of that specific layer. Some of

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.11, November 2022

368

these features are going to be discussed throughout the
research.

Fig. 1 Android security architecture

3. Android Security Features

The security of the Android operating system is based
on the following key security features:

3.1 App Sandbox

Users can execute applications or open files in a
sandbox, an isolated testing environment, without having
their application, system, or platform affected. Android
does this by giving every Android app a distinct user ID
(UID) and running each one in a separate process. This UID
is used by Android to create a kernel-level app sandbox [4].
As demonstrated in Fig. 2, an Android app's code is
performed in a sandbox while executing. An app runs
separately from the rest of the system and is unable to access
the memory of other apps. The only method an app can
access memory is using an inter-process communication
mechanism which is one of the protection mechanisms
provided by Android platforms. This is to prevent malicious
apps from accessing other apps’ data [9].

Fig. 2 Two sandboxed Android applications interacting with each other
and with the Android API

3.2 Security-Enhanced Linux in Android

Android uses Security-Enhanced Linux (SELinux) as
part of its security model to apply mandatory access control
(MAC) on all processes, even those that have root
capabilities. The SELinux feature in Android was supported
by numerous businesses and organizations. With the help of
SELinux, Android may more effectively secure system
services, limit access to application data and system logs,
and mitigate the consequences of malicious
software. SELinux functions on the principle of implicit
deny, which is if the access is not allowed explicitly, then
deny it. It operates in two modes [10]:
 Permissive mode, logs permission denials but does not

take any enforcement action.
 Enforcing mode, both logs and enforces permissions

denials.
SELinux in Android operates in enforcing mode along with
a security policy that works through the Android Open-
Source Project (AOSP).

3.3 Trusty Trusted Execution Environment (TEE)

Trusty is a secure Operating System (OS) that runs on the
same Android processor but is separated from the rest of the
system. Trusty can have full access to the device’s main
processor and memory but is isolated completely. By
running inside a TEE, malicious apps are unable to exploit
the OS and cannot reach the central processing unit without
direct permission [8]. Fig. 3 shows the isolation of the
trusted OS and the Android OS.

Fig. 3 Trusty Trusted Execution Environment (TEE)

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.11, November 2022

369

3.4 App Signing

Application signing enables developers to disclose the
identity of the application's developer and to update their
software without having to create complex permissions.
The developer must sign each Android application before it
is deployed. Otherwise, the application will be rejected. The
user ID associated with each program is specified in the
signed application certificate in which different user IDs run
different apps. Application signing protects one app from
accessing another app except through inter-process
communication. Application signing on Google Play serves

as a link between Google's trust in the developer and the
developer's trust in their application. Developers are aware
that their software is delivered to the Android device
unmodified [2].

3.5 Verified Boot

Verified Boot is designed to make sure that all executed
code originates from a reliable source often from the
original equipment manufacturer rather than from a
malicious source. The verified boot uses a device mapper,
which verifies the integrity of each device block. Fig. 4
shows how the device mapper uses a cryptographic hash
tree to ensure the integrity of each block. Each node
represents a cryptographic hash. The leaf nodes represent
the hashes of the device blocks, intermediate nodes
represent the hashes of their child nodes. The root node is
known as the root hash, it is the sum of all hashes in the
below levels. Any change made in a single device block will
change the root hash value [7].

Fig. 4 Cryptographic hash tree

4. Android Security Issues

Android has a strong protection mechanism facing Android
security issues, which is the application permissions system.
The security of the Android operating system is designed as
a permission-based approach that monitors and controls the
authorization of third-party Android apps to access vital
resources. This entails limiting third-party Android
applications' access to crucial system resources on an

Android device. Users should approve a set of permissions
an application asks for, before downloading the application.
This procedure aims to alert users to the potential risks
associated with downloading and using the application on
their device. However, even when the permissions system
is carefully understood and clear, users frequently lack
sufficient knowledge of the threat, which lead to them
placing their trust in either the app store or the application's
level of popularity, and accepting the installation without
attempting to understand the developer's intentions. End
users, marketers, and developers have strongly criticized
this permission-based approach for the ineffective
administration of permissions [3]. In this section, an
overview of the Android permissions system is discussed,
followed by the main security issues of Android.

4.1 Android Permissions Levels

Users can execute applications or open files in a sandbox,
as the <uses-permission> tag found in the
AndroidManifest.xml is used by the developer to specify
the permissions. The restrictions are established at the time
of the App installation. Android permissions fall under the
various access levels listed in Table 1. Users, system
programs, or devices are not seriously threatened by normal
permissions [11]. They are automatically granted when the
application is being installed and can be modified later from
the settings of the application. The dangerous permissions,
on the other hand, is risky as the device's sensitive APIs and
private data can be accessed through these permissions [3].
For signature-based permissions, two applications need to
be signed by the same certificate.

Table 1: Classification of Android permissions levels
 Levels

Normal
Permissions

Dangerous
permissions

Signature-
based

permissions
 For the user,

system programs,
or device, these

permissions pose
the minimum risk.

They are
automatically

granted when the
software is being

installed. From the
application

settings, they can
be modified later.

These
permissions fall
under the serious

risk category
because they can

access the
device's

sensitive APIs
and personal
information.
During the
installation
process, the

user's permission
is requested.

These
permissions are
only given if the
requesting app's

signature
matches that of
the application

maker's
certificate.
During the
installation

process, they
are implicitly

granted.

 ACCESS_WIFI_S
TATE,

BLUETOOTH,
SET ALARM,

LOCATION,
MICROPHONE,

CAMERA,
CONTACTS

APP
SIGNATURE,

APP
CERTIFICATE

D
es

cr
ip

ti
on

E

xa
m

p
le

s

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.11, November 2022

370

MODIFY_AUDIO
_SETTINGS

4.2 Permissions Threat Examples

Android permissions, despite being intended to safeguard
users and can threaten a device's resources and data. The
following are some examples of how the most popular
Android permissions can be exploited [3]:

 ACCESS_WIFI_STATE
Apps can access Wi-Fi network data, including the list of
configured networks and the active network, with this
permission. Browser and communication apps request this
permission. It can be exploited if attackers use device bugs
to obtain Wi-Fi passwords and hack into the networks the
user access regularly.

 MODIFY / DELETE SD CARDS
Apps can write to external storage, including SD cards,
when this permission is given. This Android permission is
typically needed by apps for cameras, documents, audio,
and video. Attackers exploit this permission by deleting
files or photos on the SD card.

 SEND_SMS
This permission is required by social media and
communications applications, to grant these applications to
send text messages. Attackers can use it to send messages
to premium numbers, which leaves users with unexpected
charges.

4.3 Android Security Levels

This section describes in detail the user and device security
concerns. Google regularly releases security patches to
resolve bugs and enhance device security, but malware
developers continue to develop detection obfuscation
mechanisms. The first step in dealing with a security bug is
determining the severity of the bug and its consequences if
it is exploited. The severity level assists researchers and
security teams in prioritizing the issue so that the necessary
bug fixes are deployed to users [6]. The severity levels
along with their consequences are described in Table 2:

Table 2: Severity levels
Severity

levels
Description Consequences

Critical

level

This is the most critical
severity level, and it

needs to be fixed
immediately to keep the

device secure.

 Remote boot bypass
 Remote code

execution
 Remote data wipe

 Remote DoS
attacks

 Unauthorized data
access

High level

Bugs in this category are
less critical than high-

level ones but can lead to
severe risk when

exploited.

 Remote script
execution

 Bypassing the lock
screen

 Exploitation of
cryptographic
vulnerabilities

 Remote
ransomware attack

Medium

level

Compared to critical-
level and high-level

defects, these bugs are
less dangerous, but they
still have the potential to

corrupt device data.

 Bypassing the root
permissions

 Local script
execution

 Local code
injection

 Bypassing Wi-Fi
encryption

Low level

Bugs in this category do
not harm the devices
much. However, they

must be properly patched
to secure device data.

 Removing user
applications.

 Random pop-up
notifications for
spam

 Unexpected
application
termination

4.4 Android Attacks

The percentages of Android attacks were extremely high in
2019-2020 [1]. These vulnerabilities are dangerous to
device security, and their exploitation may result in data
loss, including sensitive user data. This section describes
popular significant malicious attacks and their
consequences. The consequences of these attacks can range
from minor data loss to significant financial loss [2].

 Collusion Attack

A significant threat to Android-based devices is application
collusion. App collusion occurs when two or more
applications work together in some way to commit a
malicious activity that would be impossible to be carried out
independently. In other words, two or more applications
collude to establish malicious activity. Each of the
participating apps communicates with one another via
legitimate communication channels to carry out the tasks
assigned to each. Apps are not required to violate any
security frameworks or exploit security weaknesses to carry
out malicious activity [11].
Consequences: malicious activities and malware will be
hidden since current anti-malware solutions are incapable
of analyzing multiple apps at the same time.

 Privilege Escalation

Privilege escalation attacks target kernel-level security
flaws to gain device root privileges. The attacker can

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.11, November 2022

371

intercept publicly available device modules to gain access
to vital permissions. Such attacks may emerge from
unauthorized actions carried out by apps with more rights
than needed, which could expose users to a great deal of
sensitive data [3].
Consequence: remote access to root-level privileges might
lead to full control of the Android operating system.

 Repackaging Apps

Using reverse engineering techniques, repackaging is
carried out by injecting harmful code into the source code
and decompiling/disassembling .apk files. Malicious code
can be hidden by employing repackaging techniques to
seem like normal software. Repackaged apps are typically
corrupted variations of well-known apps. Reverse
engineering is used by attackers to download popular
Android apps, extract the source code, add their own
malicious code, repackage the program, and then publish it.
Various tools are used to obtain Java code like undx and
dex2jar [5].
Consequence: attackers will release their repacked
application through an unofficial market and as a result
users fall prey to it.

 Denial of Service Attack

The expansion of DoS attacks has been accelerated by the
increasing number of mobile devices connected to the
Internet to form a large network. This attack occurs when a
program fills up all the resources, such as memory, battery
life, and bandwidth, preventing unauthorized users from
carrying out their functions [4].
Consequence: unavailability of services to authorized users.

4.5 Real-life Attack Example

The following attack was discovered in a banking
application in South Korea, where a user performs a few
steps to transfer money using an Android banking
application [5]. During a repackaging attack, the following
steps are taken:
(1) Attacker installs the banking application.
(2) Modify and decompile the application with the

attacker’s self-sign. Attackers use reverse engineering
processes by decompiling the DEX file into different
source codes like Java as shown in Fig. 5.

(3) Publish the application as forgery to the third-party
market or Android market.

(4) Normal users install the forged banking application.

(5) Use financial transfer services.
(6) Transfer the money to the attacker’s account without

awareness.

Fig. 5 Application decompiling

4.6 Repackaging Attack Protection Mechanisms

 Self-Signing Restriction

Self-signing policy prevention is one of the protection
mechanisms against repackaging attacks. The simplest way
to accomplish this is to switch app signing from self-signing
to market signing and prohibit app distribution without the
market's signature. Although this effectively eliminates
repackaging attacks, it would violate Android's open policy
[5].

 Code Obfuscation

Code obfuscation is a mechanism used to make it more
challenging to reverse engineer source code or machine
code. The default tool used for the obfuscation of the Java
source code is called ProGuard. Obfuscation is supported
by ProGuard by converting method names, class names, and
variable names into meaningless, randomized strings [4][5].

 Code Attestation

Code is attested by the authority before performing a money
transfer from the user's application to the banking server. A
Trusted Platform Module (TPM) provides a stronger
security mechanism supporting code attestation. TPM
enables secure booting of the operating system [5].

5. Conclusion

Alongside the rapid growth of Android system usage
and the number of Android applications, malicious
activities are exponentially growing as well. Although there
exists a strong Android security system, threats and
vulnerabilities exploit the security system’s weakness in
order to allow attackers access and control the system
resources. In this research, key Android security features
and protection mechanisms have been discussed, along with
its related security issues to control, prevent, or mitigate
future threats aiming for a more robust and secure system.

References
[1] Ibne, T., & Alam, L. (2016, March 17). Android Security

Vulnerabilities Due to User Unawareness and Frameworks
for Overcoming Those Vulnerabilities. International Journal
of Computer Applications, 137(1), 14–21.
https://doi.org/10.5120/ijca2016908649

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.11, November 2022

372

[2] Ahmed, O., & Sallow, A. (2017). Android Security: A Review.
Academic Journal of Nawroz University, 6(3), 135–140.
https://doi.org/10.25007/ajnu.v6n3a99

[3] Alshehri, A., Hewins, A., McCulley, M., Alshahrani, H., Fu,
H., & Zhu, Y. (2017). Risks behind Device Information
Permissions in Android OS. Communications and Network,
09(04), 219–234. https://doi.org/10.4236/cn.2017.94016

[4] Bahman Rashidi, & Carol Fung. (2015, January 1). A Survey
of Android Security Threats and Defenses. J. Wirel. Mob.
Networks Ubiquitous Comput. Dependable Appl., 6, 3–35.
https://doi.org/10.22667/JOWUA.2015.09.31.003

[5] Jung, J. H., Kim, J. Y., Lee, H. C., & Yi, J. H. (2013, June 14).
Repackaging Attack on Android Banking Applications and Its
Countermeasures. Wireless Personal Communications, 73(4),
1421–1437. https://doi.org/10.1007/s11277-013-1258-x

[6] Li, J., Sun, L., Yan, Q., Li, Z., Srisa-an, W., & Ye, H. (2018,
July). Significant Permission Identification for Machine-
Learning-Based Android Malware Detection. IEEE
Transactions on Industrial Informatics, 14(7), 3216–3225.
https://doi.org/10.1109/tii.2017.2789219

[7] Johnstone, M. N., Baig, Z., Hannay, P., Carpene, C., & Feroze,
M. (2016). Controlled Android Application Execution for the
IoT Infrastructure. Internet of Things. IoT Infrastructures, 16–
26. https://doi.org/10.1007/978-3-319-47063-4_2

[8] Sabt, M., Achemlal, M., & Bouabdallah, A. (2015, August).
Trusted Execution Environment: What It is, and What It is Not.
2015 IEEE Trustcom/BigDataSE/ISPA.
https://doi.org/10.1109/trustcom.2015.357

[9] Spolaor, R., Abudahi, L., Moonsamy, V., Conti, M., &
Poovendran, R. (2017). No Free Charge Theorem: A Covert
Channel via USB Charging Cable on Mobile Devices. Applied
Cryptography and Network Security, 83–102.
https://doi.org/10.1007/978-3-319-61204-1_5

[10] Building SELinux Policy |. (n.d.). Android Open Source
Project. Retrieved October 22, 2022, from
https://source.android.com/docs/security/features/selinux/buil
d

[11] Karthick, S., & Binu, S. (2017, February). Android security
issues and solutions. 2017 International Conference on
Innovative Mechanisms for Industry Applications (ICIMIA).
https://doi.org/10.1109/icimia.2017.7975551

