DOI QR코드

DOI QR Code

태양광 폐실리콘 웨이퍼 회수 실리콘을 활용한 탄화규소 분말 합성

Synthesis of Silicon Carbide Powder Using Recovered Silicon from Solar Waste Silicon Wafer

  • 이윤주 (한국세라믹기술원 탄소중립소재센터) ;
  • 권오규 (한국세라믹기술원 탄소중립소재센터) ;
  • 선주형 (플러스매니저 연구소) ;
  • 장근용 (플러스매니저 연구소) ;
  • 최준철 (드림마이닝) ;
  • 권우택 (한국세라믹기술원 탄소중립소재센터)
  • Lee, Yoonjoo (Carbon Neutrality & Materials Digitalization Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Kwon, Oh-Kyu (Carbon Neutrality & Materials Digitalization Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Sun, Ju-Hyeong (Research Institute, PLUS Manager) ;
  • Jang, Geun-Yong (Research Institute, PLUS Manager) ;
  • Choi, Joon-Chul (Dream mining) ;
  • Kwon, Wooteck (Carbon Neutrality & Materials Digitalization Division, Korea Institute of Ceramic Engineering & Technology)
  • 투고 : 2022.09.09
  • 심사 : 2022.09.26
  • 발행 : 2022.10.31

초록

태양광 폐실리콘 웨이퍼에서 회수한 실리콘과 카본블랙을 활용하여 탄화규소 분말을 제조하였다. 태양광 발전시장에서 결정질 실리콘 모듈이 90% 이상을 차지한다. 태양광 모듈의 사용기한이 도래함에 따라 환경과 경제적인 측면에서 실리콘을 회수하고 활용하는 기술은 매우 중요하다. 본 연구에서는 태양광 폐패널에서 회수한 실리콘을 탄화규소 원료로 활용하기 위하여, 순도 95.74% 폐실리콘 웨이퍼로부터 정제과정을 거쳐 99.99% 실리콘 분말을 회수하였다. 탄화규소 분말 합성특성을 살펴보기 위하여, 정제된 99.99% 실리콘 분말과 탄소분말을 혼합한 후, Ar 분위기에서 열처리(1,300℃, 1,400℃, 1,500℃)과정을 수행하였다. 실리콘과 탄화규소 분말의 특성을 입도분포, XRD, SEM, ICP, FT-IR 및 Raman 분석기를 사용하여 분석하였다.

Silicon carbide powder was prepared from carbon black and silicon recovered from waste solar panels. In the solar power generation market, the number of crystalline silicon modules exceeds 90%. As the expiration date of a photovoltaic module arrives, the development of technology for recovering and utilizing silicon is very important from an environmental and economic point of view. In this study, silicon was recovered as silicon carbide from waste solar panels: 99.99% silicon powder was recovered through purification from a 95.74% purity waste silicon wafer. To examine the synthesis characteristics of SiC powder, purified 99.99% silicon powder and carbon powder were mixed and heat-treated (1,300, 1,400 and 1,500 ℃) in an Ar atmosphere. The characteristics of silicon and silicon carbide powders were analyzed using particle size distribution analyzer, XRD, SEM, ICP, FT-IR, and Raman analysis.

키워드

과제정보

본 연구는 환경부의 재원으로 환경산업기술원의 재활용 저해제품 순환이용성 개선 기술개발사업(2020003100002)의 연구비지원을 받아 수행되었습니다.

참고문헌

  1. Lee, K. and Cha, J., 2019 : Management of Solar Photovoltaic Panels under the Extended Producer Responsibility Legislation, J. Korean Soc. Miner. Energy Resour. Eng., 56(4), pp.367-376. https://doi.org/10.32390/ksmer.2019.56.4.367
  2. J. Y. Cho, A. Park, H. M. Yun, et al., 2020 : Current Status and Utilization Technology of End-of Life Photovoltaic Modules, J. of Korean Inst. of Resources and Recycling, 29(4), pp.15-30.
  3. Latunussa, C. E. L., Ardente F., Blengini, G. A., et al., 2016 : Life Cycle Assessment of an Innovative Recycling Process for Crystalline Silicon Photovoltaic Panels, Solar Energy Materials & Solar Cells, 156, pp.101-111. https://doi.org/10.1016/j.solmat.2016.03.020
  4. Kim, T. G. and Kim, K. Y., 2021 : Utilization Technology of Solar Photovoltaic Waste Panels, KISTEP Tech. Brief, 2021(13).
  5. E. J. Jung, Y. Kim, W. T. Kwon, et al., 2010 : A Study on the Preparation of SiC Nano powder from the Si Waste of Solar Cell Industry, 19(5), 44-49.
  6. Setiowati, U. and Kimura, S., 1997 : Silicon carbide powder synthesis from silicon monoxide and methane, J. Am. Ceram. Soc., 80(3), pp.757-60. https://doi.org/10.1111/j.1151-2916.1997.tb02893.x
  7. Kevorkijan, V. M., Komac, M. and Kolar, D., 1992 : Low temperature synthesis of sinterable SiC powders by carbothermic reduction of colloidal SiO2, J. Mater. Sci., 27(10), pp.2705-2712. https://doi.org/10.1007/BF00540693
  8. Just, W., Muhlhoff, L., Scholz, C., et al., 1992 : Epitaxially grown β-SiC on Si(100) and Si(111) substrates by low pressure chemical vapor deposition, Mater. Sci. Eng. B, 11(1-4), pp.317-319. https://doi.org/10.1016/0921-5107(92)90232-X
  9. E. J. Jung, M. H Lee, Y. Kim, et al., 2017 : Preparation of particle-size-controlled SiC powder for single-crystal growth, J. Korean Cryst. Growth Cryst. Technol., 27(1), pp.57-63.
  10. A. Taylor and D. S. Laidler, 1950 : The formation and crystal structure of silicon carbide, Br. J. Appl. Phys., 1(7), pp.174-181. https://doi.org/10.1088/0508-3443/1/7/303
  11. Sujirote, K., Leangsuwan, P., 2003 : Silicon carbide formation from pretreated rice husks, J. Mater. Sci., 38, pp. 4739-4744. https://doi.org/10.1023/A:1027475018767