References
- Aifantis, E.C. (2011), "On the gradient approach-relation to Eringens nonlocal theory", Int. J. Eng. Sci., 49(12), 1367-1377. https://doi.org/10.1016/j.ijengsci.2011.03.016.
- Akgoz, B. and Civalek, O. (2012), "Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory", Arch. Appl. Mech., 82(3), 423-443. https://doi.org/10.1007/s00419-011-0565-5.
- Akgoz, B. and Civalek, O. (2013), "A size-dependent shear deformation beam model based on the strain gradient elasticity theory", Int. J. Eng. Sci., 70, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.004 .
- Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Continua., 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641.
- Ansari, R., Gholami, R., Shojaei, M. F., Mohammadi, V. and Sahmani, S. (2013), "Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory", Compos Struct., 100, 385-397. https://doi.org/10.1016/j.compstruct.2012.12.048.
- Arefi, M., Pourjamshidian, M. and Arani, A.G. (2017), "Application of nonlocal strain gradient theory and various shear deformation theories to nonlinear vibration analysis of sandwich nano-beam with FG-CNTRCs face-sheets in electrothermal environment", Appl. Phys. A-Mater., 123, 323. https://doi.org/10.1007/s00339-017-0922-5.
- Attia, M.A. and Mahmoud, F.F. (2016), "Modeling and analysis of nanobeams based on nonlocal-couple stress elasticity and surface energy theories", Int. J. Mech. Sci., 105, 126-134. https://doi.org/10.1016/j.ijmecsci.2015.11.002.
- Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
- Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E., 41, 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
- Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math Model., 35, 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
- Davood, S., Karami, B., Fahham, H.R. and Li, L. (2018), "On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory", Acta Mech., https://doi.org/10.1007/s00707-018-2247-7.
- Doan, T.L., Do, V.T., Tran, T.T., Phung, V.M., Tran, V.K. and Pham, V.V. (2021), "Mechanical analysis of bi-functionally graded sandwich nanobeams", Adv. Nano Res., 11(1), 55-71. https://doi.org/10.12989/anr.2021.11.1.055.
- Ebrahimi, F. and Barati, M.R. (2016), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001,
- Ebrahimi, F, and Barati, M.R. (2017a), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058.
- Ebrahimi, F. and Barati, M.R. (2017b), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos Struc., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092.
- Ebrahimi, F. and Barati, M.R. (2017c), "Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects", Appl. Phys. A-Mater., 123(5). https://doi.org/10.1007/s00707-016-1755-6.
- Ebrahimi, F. and Barati, M.R. (2017d), "Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects", Acta Mech, 228, 1197-1210. DOI:10.1007/s00707-016-1755-6.
- Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F. (2014), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl Math Comput., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072.
- Eltaher, M.A., Khaterb, M.E and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model., 40, 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026.
- Emam, S.A. (2013), "A general nonlocal nonlinear model for buckling of nanobeams", Appl Math Model., 37, 6929-6939. https://doi.org/10.1016/j.apm.2013.01.043.
- Eringen, A.C (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phy., 54, 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer: New York (NY).
- Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of Kirchhoff plate", Comput Mater. Continua., 59(2), 433-456. https://doi.org/10.48550/arXiv.2102.02617.
- Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput Methods Appl Mech Engrg., 194(39-41), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008.
- Khorshidi, M. A., Shariati, M and Emam, S.A. (2016), "Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory", Int. J. Mech. Sci., 110, 160-169. https://doi.org/10.1016/j.ijmecsci.2016.03.006.
- Kong, S., Zhou, S., Nie, Z. and Wang, K. (2009), "Static and dynamic analysis of micro beams based on strain gradient elasticity theory", Int J Eng Sci., 47(4), 87(4) 98. https://doi.org/10.1016/j.ijengsci.2008.08.008.
- Lam, D., Yang, F., Chong, A., Wang, J. and Tong, P. (2003). "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids., 51, 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Lei, J., He, Y., Zhang, B., Gan, Z. and Zeng, P. (2013), "Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory", Int. J. Eng. Sci., 72, 36-52. https://doi.org/10.1016/j.ijengsci.2013.06.012.
- Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", INT J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013.
- Li, L. and Hu, Y. (2016a), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011.
- Li, L. and Hu, Y. (2017a), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025.
- Li, L., Hu, Y. and Li, X. (2016b), "Longitudinal vibration of sizedependent rods via nonlocal strain gradient theory", Int J Mech Sc., 115-116, 135-144. https://doi.org/10.1016/j.ijmecsci.2016.06.011.
- Li, L., Li, X. and Hu, Y. (2016c), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", INT J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010.
- Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017b), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032.
- Li, Y.S., Feng, W.J. and Cai, Z.Y. (2014), "Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory", Compos Struc., 115, 41-50. https://doi.org/10.1016/j.compstruct.2014.04.005.
- Li, Y.S., Ma, P. and Wang, W. (2016d), "Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory", J, Intel. Mat. Syst. Str., 27, 1139-1149. https://doi.org/10.1177/1045389X15585899.
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Lu, L., Guo, X and Zhao, J. (2017a), "A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms", Int J Eng Sci., 119, 265-277. https://doi.org/10.1016/j.ijengsci.2017.06.024.
- Lu, L., Guo, X. and Zhao, J. (2017b), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", Int J Eng Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006.
- Ma, H.M., Gao, X.L and Reddy, J.N. (2008), "A microstructuredependent Timoshenko beam model based on a modified couple stress theory", J Mech Phys Solids., 56, 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007.
- Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Arch Ration Mech. An., 16, 51-78. https://doi.org/10.1007/BF00248490.
- Mindlin, R.D. (1965), "Second gradient of strain and surfacetension in linear elasticity", Int J Solids Struct., 1, 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.
- Mirfatah, S.M., Shahmohammadi, M.A., Salehipour, H. and Civalek, O. (2022), "Size-dependent dynamic stability of nanocomposite enriched micro-shell panels in thermal environment using the modified couple stress theory", Eng. Anal. Bound. Elements, 143, 483-500. https://doi.org/10.1016/j.enganabound.2022.07.004.
- Mirfatah, S.M., Tayebikhorami, S., Shahmohammadi, M.A., Salehipour, H. and Civalek, O. (2022), "Thermo-elastic damped nonlinear dynamic response of the initially stressed hybrid GPL/CNT/fiber/polymer composite toroidal shells surrounded by elastic foundation", Compos Struc., 283, 115047. https://doi.org/10.1016/j.compstruct.2021.115047.
- Mohammad-Abadi, M. and Daneshmehr, A.R. (2014), "Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions", Int J Eng Sci., 74, 1-14. https://doi.org/10.1016/j.ijengsci.2013.08.010.
- Nateghi, A., Salamat-talab, M., Rezapour, J. and Daneshian, B. (2012), "Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory", Appl. Math Model., 36(4), 971-974. https://doi.org/10.1016/j.apm.2011.12.035.
- Nejad, M.Z. and Hadi, A. (2016a), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/ j.ijengsci.2016.04.011.
- Nejad, M.Z. and Hadi, A. (2016b), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int J Eng Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005.
- Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016c), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001.
- Nguyen-Thanh, N., Zhou, K., Zhuang, X., Areias, P., NguyenXuan, H., Bazilevs, Y. and Rabczuk, T. (2017), "Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling", Comput. Meth. Appl. Mech. Engrg., 316, 1157-1178. https://doi.org/10.1016/j.cma.2016.12.002.
- Nguyen, T.N., Lee, S., Nguyen, P.C., Nguyen-Xuan, H. and Lee, J. (2020), "Geometrically nonlinear postbuckling behavior of imperfect FG-CNTRC shells under axial compression using isogeometric analysis", Europ. J. Mech. - A/Solids, 84, 1040-1066. https://doi.org/10.1016/j.euromechsol.2020.104066 .
- Nguyen, T.D., Tran, V.K., Truong, T.T.H. and Phung, V.M. (2022), "Nonlinear static bending analysis of microplates resting on imperfect two-parameter elastic foundations using modified couple stress theory", Compt. Rendus. Mecanique., 350(G1), 121-141. https://doi.org/10.5802/crmeca.105.
- Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech Microeng., 16, 2355-2359. https://doi.org/10.1088/0960-1317/16/11/015.
- Pham, Q.H. and Nguyen, P.C. (2022c), "Dynamic stability analysis of porous functionally graded microplates using a refined isogeometric approach", Compos. Struct., 284, 115086. https://doi.org/10.1016/j.compstruct.2021.115086.
- Pham, Q.H., Nguyen, P.C. and Tran, T.T (2022d), "Dynamic response of porous functionally graded sandwich nanoplates using nonlocal higher-order isogeometric analysis", Compos. Struct., 290, 115565. https://doi.org/10.1016/j.compstruct.2022.115565.
- Pham, Q.H., Nguyen, P.C. and Tran, T.T. (2022f), "Free vibration response of auxetic honeycomb sandwich plates using an improved higher-order ES-MITC3 element and artificial neural network", Thin-Wall. Struct., 175, 109203. https://doi.org/10.1016/j.tws.2022.109203.
- Pham, Q.H., Nguyen, P.C., Tran, T.T. and Nguyen-Thoi, T. (2021d), "Free vibration analysis of nanoplates with auxetic honeycomb core using a new third-order finite element method and nonlocal elasticity theory", Eng. Comput, 1-19. https://doi.org/10.1007/s00366-021-01531-3.
- Pham, Q.H., Nguyen, P.-C., Tran, V.K and Nguyen-Thoi, T. (2021a), "Finite element analysis for functionally graded porous nano-plates resting on elastic foundation", Steel Compos. Struct., 41(2), 149-166. https://doi.org/10.12989/scs.2021.41.2.149.
- Pham, Q.H., Nguyen, P.-C., Tran, V.K., Lieu, X.Q. and Tran, T.T (2022b), "Modified nonlocal couple stress isogeometric approach for bending and free vibration analysis of functionally graded nanoplates", Eng. Comput., 1-26. https://doi.org/10.1007/s00366-022-01726-2.
- Pham, Q.H., Nguyen, P.C., Tran, V.K., Nguyen-Thoi, T. (2021), "Isogeometric analysis for free vibration of bidirectional functionally graded plates in the fluid medium", Defence Technol., 18(8), 1311-1329. https://doi.org/10.1016/j.dt.2021.09.006.
- Pham, Q.H., Tran, T.T., Tran, V.K., Nguyen, P.C. and NguyenThoi, T. (2022e), "Free vibration of functionally graded porous non-uniform thickness annular-nanoplates resting on elastic foundation using ES-MITC3 element", Alexandria Eng. J., 61(3), 1788-1802. https://doi.org/10.1016/j.aej.2021.06.082.
- Pham, Q.H., Tran, T.T., Tran, V.K., Nguyen, P.C., Nguyen-Thoi, T. and Zenkour, A.M. (2021c), "Bending and hygro thermo mechanical vibration analysis of a functionally graded porous sandwich nanoshell resting on elastic foundation", Mech. Adv. Mater. Struct., 28, https://doi.org/10.1080/15376494.2021.1968549.
- Pham, Q.H., Tran, V.K., Tran, T.T., Nguyen-Thoi, T., Nguyen, P.C. and Pham, V.D. (2021b), "A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation", Case Studies Therm. Eng., 26, 101170. https://doi.org/10.1016/j.csite.2021.101170.
- Pham, Q.H., Tran, V.K., Tran, T.T., Nguyen, P.C. and Malekzadeh, P. (2022a), "Dynamic instability of magnetically embedded functionally graded porous nanobeams using the strain gradient theory", Alexandria Eng. J., 61(12), 10025-10044. https://doi.org/10.1016/j.aej.2022.03.007.
- Salehipour, H., Emadi, S., Tayebikhorami, S. and Shahmohammadi, M.A. (2022), "A semi-analytical solution for dynamic stability analysis of nanocomposite/fibre-reinforced doubly-curved panels resting on the elastic foundation in thermal environment", Europ. Phys. J. Plus., 137(1), 1-36. https://doi.org/10.1140/epjp/s13360-021-02190-5.
- Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Meth. Appl. Mech. Engrg., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790.
- Shahmohammadi, M.A., Azhari, M., Saadatpour, M.M., Salehipour, H. and Civalek, O. (2021), "Dynamic instability analysis of general shells reinforced with polymeric matrix and carbon fibers using a coupled IG-SFSM formulation", Compos. Struct., 263, 113720. https://doi.org/10.1016/j.compstruct.2021.113720.
- Shahmohammadi, M.A., Azhari, M., Salehipour, H., Fantuzzi, N., Amabili, M. and Civalek, O. (2022), "Nonlinear analysis of fiber-reinforced folded shells enriched by nano-additives using a coupled FEM-IGA formulation", Compos. Struct, 116221. https://doi.org/10.1016/j.compstruct.2022.116221.
- Shahmohammadi, M.A., Mirfatah, S.M., Salehipour, H., Azhari, F. and Civalek, O. (2022), "Dynamic stability of hybrid fiber/nanocomposite-reinforced toroidal shells subjected to the periodic axial and pressure loadings", Mech. Adv. Mater. Struct., 1-17. https://doi.org/10.1080/15376494.2022.2037172.
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int J Eng Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.
- Tran, T.T., Tran, V.K., Pham, Q.H. and Zenkour, A.M. (2021a), "Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation", Compos. Struct., 264(15), 113737. https://doi.org/10.1016/j.compstruct.2021.113737.
- Tran, T.T., Nguyen, P.C. and Pham, Q.H. (2021b), "Vibration analysis of FGM plates in thermal environment resting on elastic foundation using ES-MITC3 element and prediction of ANN", Case Studies Thermal Eng., 24, 100852. https://doi.org/10.1016/j.csite.2021.100852.
- Tran, V.K., Pham, Q.H. and Nguyen-Thoi, T. (2020b), "A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations", Eng. with Comput., 1-26. http://doi.org/10.1007/s00366-020-01107-7.
- Tran, V.K., Tran, T.T., Phung, M.V., Pham, Q.H. and Nguyen-Thoi, T. (2020a), "A finite element formulation and nonlocal theory for the static and free vibration analysis of the sandwich functionally graded nanoplates resting on elastic foundation", J. Nanomater., 2020. https://doi.org/10.1155/2020/8786373.
- Triantafyllidis, N. and Bardenhagen, S. (1993), "On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models", J. Elasticity., 33, 259-293. https://doi.org/10.1007/BF00043251.
- Vu-Bac, N., Duong, T.X., Lahmer, T., Zhuang, X., Sauer, R.A., Park, H.S. and Rabczuk, T. (2018), "A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures", Comput Methods Appl Mech Engrg., 331, 427-455. https://doi.org/10.1016/j.cma.2017.09.034.
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int J. Solids Struct., 39, 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Zhuang, X., Guo, H., Alajlan, N., Zhu, H. and Rabczuk, T. (2021), "Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning", Europ. J. Mech. A/Solids, 87, 104225. https://doi.org/10.1016/j.euromechsol.2021.104225.