DOI QR코드

DOI QR Code

Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core

  • Foroutan, Kamran (Industrial Systems Engineering, University of Regina) ;
  • Dai, Liming (Industrial Systems Engineering, University of Regina)
  • Received : 2021.10.05
  • Accepted : 2022.11.01
  • Published : 2022.11.10

Abstract

In this research, an approach combining a semi-analytical method and an analytical method is presented to investigate the static and dynamic post-buckling behavior of the sandwich functionally graded (FG) porous cylindrical shells exposed to external pressure. The sandwich cylindrical shell considered is composed of a viscoelastic core and two FG porous (FGP) face layers. The viscoelastic core is made of Kelvin-Voigt-type material. The material properties of the FG porous face layer are considered continuous through each face thickness according to a porosity coefficient and a volume fraction index. Two types of sandwich FG porous viscoelastic cylindrical shells named Type A and Type B are considered in the research. Type A shell has the porosity evenly distributed across the thickness direction, and Type B has the porosity unevenly distributes across the thickness direction. The FG face layers are considered in two cases: outside metal surface, inside ceramic surface (OMS-ICS), and inside metal surface, outside ceramic surface (IMS-OCS). According to Donnell shell theory, von-Karman equation, and Galerkin's method, a discretized nonlinear governing equation is derived for analyzing the behavior of the shells. The explicit expressions for static and dynamic critical buckling loading are thus developed. To study the dynamic buckling of the shells, the governing equation is examined via a numerical approach implementing the fourth-order Runge-Kutta method. With a procedure presented by Budiansky-Roth, the critical load for dynamic post-buckling is obtained. The effects of various parameters, such as material and geometrical parameters, on the post-buckling behaviors are investigated.

Keywords

References

  1. Abdelrahman, A.A., Nabawy, A.E., Abdelhaleem, A.M., Alieldin, S.S. and Eltaher, M.A. (2020), "Nonlinear dynamics of viscoelastic flexible structural systems by finite element method", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01141-5.
  2. Ahmadi, H. and Foroutan, K. (2019), "Combination resonance analysis of FG porous cylindrical shell under two-term excitation", Steel Compos. Struct., 32(2), 253-264. http://dx.doi.org/10.12989/scs.2019.32.2.253.
  3. Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. https://doi.org/10.1177/1077546320947302.
  4. Amir, M. and Talha, M. (2019), "Nonlinear vibration characteristics of shear deformable functionally graded curved panels with porosity including temperature effects", Int. J. Pres. Ves. Pip., 172, 28-41. https://doi.org/10.1016/j.ijpvp.2019.03.008.
  5. Anh, V.T.T., Bich, D.H. and Duc, N.D. (2015), "Nonlinear stability analysis of thin FGM annular spherical shells on elastic foundations under external pressure and thermal loads", Eur. J. Mech. A-Solid., 50, 28-38. https://doi.org/10.1016/j.euromechsol.2014.10.004.
  6. Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Behavior of a viscoelastic composite plates under transient load", J. Mech. Sci. Technol., 25(5), 1129-1140. https://doi.org/10.1007/s12206-011-0302-6.
  7. Atmane, H.A., Tounsi, A., Ziane, N. and Mechab, I. (2011), "Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section", Steel Compos. Struct., 11(6), 489-504. http://dx.doi.org/10.12989/scs.2011.11.6.489.
  8. Baruch, M. and Singer, J. (1963), "Effect of eccentrically of stiffener on the general instability of stiffened cylindrical shells under hydro-static pressure", J. Mech. Eng. Sci., 5, 23-27. https://doi.org/10.1243/JMES_JOUR_1963_005_005_02.
  9. Basha, M., Wagih, A., Melaibari, A., Lubineau, G. and Eltaher, M.A. (2022a), "On the impact damage resistance and tolerance improvement of hybrid CFRP/Kevlar sandwich composites", Micropor. Mesopor. Mat., 333, 111732. https://doi.org/10.1016/j.micromeso.2022.111732.
  10. Basha, M., Wagih, A., Melaibari, A., Lubineau, G., Abdraboh, A.M. and Eltaher, M.A. (2022b), "Impact and post-impact response of lightweight CFRP/wood sandwich composites", Compos. Struct., 279, 114766. https://doi.org/10.1016/j.compstruct.2021.114766.
  11. Bich, D.H., Dung, D.V. and Nam, V.H. (2012), "Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical panels", Compos. Struct., 94(8), 2465-2473. https://doi.org/10.1016/j.compstruct.2012.03.012.
  12. Bich, D.H., Dung, D.V., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002.
  13. Brush, D.O. and Almroth, B.O. (1975), Buckling of bars, plates, and shells, McGraw-Hill, New York.
  14. Budiansky, B. (1962), "Axisymmetric dynamic buckling of clamped shallow spherical shells", NASA, TN-1510, 597-606.
  15. Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp. Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020.
  16. Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021), "Buckling analysis of CNTRC curved sandwich nanobeams in thermal environment", Appl. Sci., 11(7), 3250. https://doi.org/10.3390/app11073250.
  17. del Prado, Z.J., Amabili, M. and Goncalves, P.B. (2017), "Nonlinear vibrations of imperfect fluid-filled viscoelastic cylindrical shells", Procedia Eng., 199, 570-576. https://doi.org/10.1016/j.proeng.2017.09.175.
  18. Deniz, A. and Sofiyev, A.H. (2013), "The nonlinear dynamic buckling response of functionally graded truncated conical shells", J. Sound Vib., 332(4), 978-992. https://doi.org/10.1016/j.jsv.2012.09.032.
  19. Dong, Y., He, L., Wang, L., Li, Y. and Yang, J. (2018), "Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: An analytical study", Aerosp. Sci. Technol., 82-83, 466-478. https://doi.org/10.1016/j.ast.2018.09.037.
  20. Duc, N.D., Bich, D.H. and Cong, P.H. (2016), "Nonlinear thermal dynamic response of shear deformable FGM plates on elastic foundations", J. Therm. Stresses, 39(3), 278-297. https://doi.org/10.1080/01495739.2015.1125194.
  21. Duc, N.D., Cong, P.H., Anh, V.M., Quang, V.D., Tran, P., Tuan, N.D. and Thinh, N.H. (2015), "Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment", Compos. Struct., 132, 597-609. https://doi.org/10.1016/j.compstruct.2015.05.072.
  22. Duc, N.D., Kim, S.E., Quan, T.Q., Manh, D.T. and Cuong, N.H. (2020), "Nonlinear buckling of eccentrically stiffened nanocomposite cylindrical panels in thermal environments", Thin Wall. Struct., 146, 106428. https://doi.org/10.1016/j.tws.2019.106428.
  23. Duc, N.D., Kim, S.E., Manh, D.T. and Nguyen, P.D. (2020), "Effect of eccentrically oblique stiffeners and temperature on the nonlinear static and dynamic response of S-FGM cylindrical panels", Thin Wall. Struct., 146, 106438. https://doi.org/10.1016/j.tws.2019.106438.
  24. Duc, N.D., Nguyen, P.D. and Khoa, N.D. (2017b), "Nonlinear dynamic analysis and vibration of eccentrically stiffened SFGM elliptical cylindrical shells surrounded on elastic foundations in thermal environments", Thin Wall. Struct., 117, 178-189. https://doi.org/10.1016/j.tws.2017.04.013.
  25. Duc, N.D., Quang, V.D., Nguyen, P.D. and Chien, T.M. (2018), "Nonlinear dynamic response of functionally graded porous plates on elastic foundation subjected to thermal and mechanical loads", J. Appl. Comput. Mech., 4(4), 245-259. https://doi.org/10.22055/JACM.2018.23219.1151.
  26. Duc, N.D., Seung-Eock, K. and Chan, D.Q. (2018), "Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT", J. Therm. Stresses, 41(3), 331-365. https://doi.org/10.1080/01495739.2017.1398623.
  27. Duc, N.D., Tuan, N.D., Tran, P. and Quan, T.Q. (2017a), "Nonlinear dynamic response and vibration of imperfect shear deformable functionally graded plates subjected to blast and thermal loads", Mech. Adv. Mater. Struct., 24(4), 318-329. https://doi.org/10.1080/15376494.2016.1142024.
  28. Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017.
  29. Duc, N.D. (2014) Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press, Hanoi.
  30. Duc, N.D. (2016), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech. A Solids, 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004.
  31. Duc, N.D. (2018), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater., 20(3), 351-378. https://doi.org/10.1177/10996362166532.
  32. Duc, N.D. and Tran, Q.Q. (2015), "Nonlinear dynamic analysis of imperfect FGM double curved thin shallow shells with temperature-dependent properties on elastic foundation", J. Vib. Control, 21(7), 1340-1362. https://doi.org/10.1177/1077546313494114.
  33. Eltaher, M.A., Shanab, R.A. and Mohamed, N.A. (2022), "Analytical solution of free vibration of viscoelastic perforated nanobeam", Arch. Appl. Mech., 1-23. https://doi.org/10.1007/s00419-022-02184-4.
  34. Esmailzade, E. and Jalali, M.A. (1999), "Nonlinear oscillations of viscoelastic rectangular plates", Nonlinear Dyn., 18, 311-319. https://doi.org/10.1023/A:1026452007472.
  35. Ferreira, A.J.M., Araujo, A.L., Neves, A.M.A., Rodrigues, J.D., Carrera, E., Cinefra, M. and Soares, C.M. (2013), "A finite element model using a unified formulation for the analysis of viscoelastic sandwich laminates", Compos. B. Eng., 45(1), 1258-1264. https://doi.org/10.1016/j.compositesb.2012.05.012.
  36. Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2020), "Nonlinear static and dynamic hygrothermal buckling analysis of imperfect functionally graded porous cylindrical shells", Appl. Math. Model., 77(1), 539-553. https://doi.org/10.1016/j.apm.2019.07.062.
  37. Foroutan, K. and Ahmadi, H. (2020), "Nonlinear Static and Dynamic Buckling Analyses of Imperfect FGP Cylindrical Shells Resting on Nonlinear Elastic Foundation Under Axial Compression", Int. J. Struct. Stab. Dyn., 20(7), 2050074. https://doi.org/10.1142/S0219455420500741.
  38. Foroutan, K. and Ahmadi, H. (2020), "Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations", Steel Compos. Struct., 37(1), 51-73. http://dx.doi.org/10.12989/scs.2020.37.1.051.
  39. Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2019), "Nonlinear dynamic analysis of spiral stiffened cylindrical shells rested on elastic foundation", Steel Compos. Struct., 32(4), 509-519. http://dx.doi.org/10.12989/scs.2019.32.4.509.
  40. Gao, K., Gao, W., Wu, B., Wu, D. and Song, C. (2018a), "Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales", Thin Wall Struct., 125, 281-293. https://doi.org/10.1016/j.tws.2017.12.039.
  41. Gao, K., Gao, W., Chen, D. and Yang, J. (2018b), "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation", Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013.
  42. Gao, K., Huang, Q., Kitipornchai, S. and Yang, J. (2021), "Nonlinear dynamic buckling of functionally graded porous beams", Mech. Adv. Mater. Struct., 28(4), 418-429. https://doi.org/10.1080/15376494.2019.1567888.
  43. Gao, K., Li, R. and Yang, J. (2019), "Dynamic characteristics of functionally graded porous beams with interval material properties", Eng. Struct., 197, 109441. https://doi.org/10.1016/j.engstruct.2019.109441.
  44. Hamed, M.A., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
  45. Huang, H. and Han, Q. (2008), "Buckling of imperfect functionally graded cylindrical shells under axial compression", Eur. J. Mech. A-Solid., 27(6), 1026-1036. https://doi.org/10.1016/j.euromechsol.2008.01.004.
  46. Huang, H. and Han, Q. (2009b), "Nonlinear buckling and postbuckling of heated functionally graded cylindrical shells under combined axial compression and radial pressure", Int. J. Nonlin. Mech., 44(2), 209-218. https://doi.org/10.1016/j.ijnonlinmec.2008.11.016.
  47. Huang, H. and Han, Q. (2010b), "Nonlinear buckling of torsionloaded functionally graded cylindrical shells in thermal environment", Eur. J. Mech. A-Solid., 29(1), 42-48. https://doi.org/10.1016/j.euromechsol.2009.06.002.
  48. Huang, H. and Han, Q. (2010c), "Nonlinear dynamic buckling of functionally graded cylindrical shells subjected to a timedependent axial load", Compos. Struct., 92(2), 593-598. https://doi.org/10.1016/j.compstruct.2009.09.011.
  49. Huang, H. and Han, Q. (2009a), "Nonlinear elastic buckling and post-buckling of axially compressed functionally graded cylindrical shells", Int. J. Mech. Sci., 51(7), 500-507. https://doi.org/10.1016/j.ijmecsci.2009.05.002.
  50. Huang, H. and Han, Q. (2010a), "Research on nonlinear postbuckling of functionally graded cylindrical shells under radial loads", Compos. Struct., 92(6), 1352-1357. https://doi.org/10.1016/j.compstruct.2009.11.016.
  51. Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., 15(4), 399-423. http://dx.doi.org/10.12989/scs.2013.15.4.399.
  52. Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperaturedependent physical properties", Steel Compos. Struct., 15(5), 481-505. http://dx.doi.org/10.12989/scs.2013.15.5.481.
  53. Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022a), "Free Vibration of FG-CNTRCs NanoPlates/Shells with Temperature-Dependent Properties", Mathematics, 10(4), 583. https://doi.org/10.3390/math10040583.
  54. Melaibari, A., Daikh, A.A., Basha, M., Wagih, A., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022b), "A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries", Mathematics, 10(3), 408. https://doi.org/10.3390/math10030408.
  55. Michel, G., Gusic, G. and Jullien, J.F. (2000), "Buckling of thin cylindrical shells under lateral pressure: Influence of localised thickness variation", Int. J. Struct. Stab. Dyn., 372-383. https://doi.org/10.1142/9781848160095_0048.
  56. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2021), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37(4), 2823-2836. https://doi.org/10.1007/s00366-020-00976-2.
  57. Quang, V.D., Khoa, N.D. and Duc, N.D. (2021), "The effect of structural characteristics and external conditions on the dynamic behavior of shear deformable FGM porous plates in thermal environment", J. Mech. Sci. Technol., 35(8), 3323-3329. https://doi.org/10.1007/s12206-021-0706-x.
  58. Quan, T.Q., Kim, S.E. and Duc, N.D. (2019), "Nonlinear dynamic response and vibration of shear deformable piezoelectric functionally graded truncated conical panel in thermal environments", Eur. J. Mech. A-Solid., 77, 103795. https://doi.org/10.1016/j.euromechsol.2019.103795.
  59. Sewall, J.L. and Naumann, E.C. (1968), "An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners", NASA technical note, D-4705.
  60. Shen, H.S. (1998), "Post-buckling analysis of imperfect stiffened laminated cylindrical shells under combined external pressure and thermal loading", Int. J. Mech. Sci., 40(4), 339-355. https://doi.org/10.1016/S0020-7403(97)00037-4.
  61. Shen, H.S., Yang, J. and Kitipornchai, S. (2010), "Postbuckling of internal pressure loaded FGM cylindrical shells surrounded by an elastic medium", Eur. J. Mech. A-Solid., 29(3), 448-460. https://doi.org/10.1016/j.euromechsol.2009.11.002.
  62. Sofiyev, A.H. and Schnack, E. (2004), "The stability of functionally graded cylindrical shells under linearly increasing dynamic torsional loading", Eng. Struct., 26(10), 1321-1331. https://doi.org/10.1016/j.engstruct.2004.03.016.
  63. Sofiyev, A.H. (2004), "The stability of functionally graded truncated conical shells subjected to aperiodic impulsive loading", Int. J. Solids Struct., 41(13), 3411-3424. https://doi.org/10.1016/j.ijsolstr.2004.02.003.
  64. Sofiyev, A.H. (2009), "The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure", Compos. Struct., 89(3), 356-366. https://doi.org/10.1016/j.compstruct.2008.08.010.
  65. Sun, J., Xu, X. and Lim, C.W. (2014), "Buckling of functionally graded cylindrical shells under combined thermal and compressive loads", J. Therm. Stresses, 37(3), 340-362. https://doi.org/10.1080/01495739.2013.869143.
  66. Sun, J., Xu, X. and Lim, C.W. (2014), "Torsional buckling of functionally graded cylindrical shells with temperaturedependent properties", Int. J. Struct. Stab. Dyn., 14(1), 1-23. https://doi.org/10.1142/S021945541350048X.
  67. Van Thanh, N., Khoa, N.D. and Duc, N.D. (2020), "Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments", Thin Wall. Struct., 154, 106837. https://doi.org/10.1016/j.tws.2020.106837.
  68. Van Dung, D. and Nam, V.H. (2014), "Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under external pressure and surrounded by an elastic medium", Eur. J. Mech. A-Solid., 46, 42-53. https://doi.org/10.1016/j.euromechsol.2014.02.008.
  69. Volmir, A.S. (1972), Non-linear Dynamics of Plates and Shells, Science Edition M., USSR.
  70. Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Tech., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
  71. Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023.
  72. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  73. Zhai, Y., Li, Y. and Liang, S. (2018), "Free vibration analysis of five-layered composite sandwich plates with two-layered viscoelastic cores", Compos. Struct., 200, 346-357. https://doi.org/10.1016/j.compstruct.2018.05.082.
  74. Zhang, Y., Jin, G., Chen, M., Ye, T., Yang, C. and Yin, Y. (2020), "Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core", Compos. Struct., 244, 112298. https://doi.org/10.1016/j.compstruct.2020.112298.
  75. Zhou, Z., Ni, Y., Tong, Z., Zhu, S., Sun, J. and Xu, X. (2019), "Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells", Int. J. Mech. Sci., 151, 537-550. https://doi.org/10.1016/j.ijmecsci.2018.12.012.
  76. Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1-3), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2.