DOI QR코드

DOI QR Code

Resonance analysis of cantilever porous graphene platelet reinforced pipe under external load

  • Huang, Qinghua (School of Intelligent Manufacturing,Zhejiang Guangsha Vocational and Technical University of Construction) ;
  • Yu, Xinping (School of Intelligent Manufacturing,Zhejiang Guangsha Vocational and Technical University of Construction) ;
  • Lv, Jun (School of Intelligent Manufacturing,Zhejiang Guangsha Vocational and Technical University of Construction) ;
  • Zhou, Jilie (School of Mechanical Engineering, Zhejiang University) ;
  • Elvenia, Marischa Ray (Nabi Data Science & Computational Intelligence Research Co.)
  • Received : 2021.08.24
  • Accepted : 2022.10.31
  • Published : 2022.11.10

Abstract

Nowadays, there is a high demand for great structural implementation and multifunctionality with excellent mechanical properties. The porous structures reinforced by graphene platelets (GPLs) having valuable properties, such as heat resistance, lightweight, and excellent energy absorption, have been considerably used in different engineering implementations. However, stiffness of porous structures reduces significantly, due to the internal cavities, by adding GPLs into porous medium, effective mechanical properties of the porous structure considerably enhance. This paper is relating to vibration analysis of fluidconveying cantilever porous graphene platelet reinforced (GPLR) pipe with fractional viscoelastic model resting on foundations. A dynamical model of cantilever porous GPLR pipes conveying fluid and resting on a foundation is proposed, and the vibration, natural frequencies and primary resonant of such a system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with the fractional viscoelastic model is used to govern the construction relation of nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied to the pipe and the excitation frequency is close to the first natural frequency. The governing equation for transverse motions of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

Keywords

References

  1. Afrookhteh, S.S., Fathi, A., Naghdipour, M. and Alizadeh Sahraei, A. (2016), "An experimental investigation of the effects of weight fractions of reinforcement and timing of hardener addition on the strain sensitivity of carbon nanotube/polymer composites", U.P.B. Sci. Bull., Series B, 78(4), 121-130.
  2. Afrookhteh, S.S., Shakeri, M., Baniassadi, M. and Alizadeh Sahraei, A. (2018), "Microstructure Reconstruction and Characterization of the Porous GDLs for PEMFC Based on Fibers Orientation Distribution", Fuel Cells, 18(2), https://doi.org/10.1002/fuce.201700239.
  3. Ahmadi, S.M., Campoli, G., Yavari, S.A., Sajadi, B., Wauthle, R., Schrooten, J., Weinans, H. and Zadpoor, A.A. (2014), "Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells", J. Mech. Behav. Biomed. Mater., 34, 106-115. https://doi.org/10.1016/j.jmbbm.2014.02.003.
  4. Ahmed Houari, M.S., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
  5. Alizadeh Sahraei, A., Mokarizadeh, A.H., George, D., Rodrigue, D., Baniassadi, M., Foroutan, M. (2019), "Insights into interphase thickness characterization for graphene/epoxy nanocomposites: A molecular dynamics simulation", Phys. Chem. Chem. Phys., 21(36), 19890-19903. https://doi.org/10.1039/C9CP04091A.
  6. Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659.
  7. Arioui, O., Belakhdar, K., Kaci, A. and Tounsi, A. (2018), "Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials", Steel Compos. Struct., 27(6), 777-788. https://doi.org/10.12989/scs.2018.27.6.777.
  8. Bambaeechee, M. (2019), "Free vibration of AFG beams with elastic end restraints", Steel Compos. Struct., 33(3), 403-432. https://doi.org/10.12989/scs.2019.33.3.403.
  9. Barati, M.R., and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235
  10. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  11. Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Reviews, 49(1), 1-28. https://doi.org/10.1115/1.3101882
  12. Beni, Y.T. and Alihemmati, J. (2022), "On the coupled transient hygrothermal analysis in the porous cylindrical panels", Transport Porous Media, 142, 89-114, https://doi.org/10.1007/s11242-021-01605-2.
  13. Cao, J., Zhang, Z., Guo, Y. and Gong, T. (2019), "Inhomogeneous bonding state modeling for vibration analysis of explosive clad pipe", Steel Compos. Struct., 31(3), 233-242. https://doi.org/10.12989/scs.2019.31.3.233.
  14. Chen, X. and Chen, X. (2016), "Effect of local wall thinning on ratcheting behavior of pressurized 900 elbow pipe under reversed bending using finite element analysis", Steel Compos. Struct., 20(4), 931-950. https://doi.org/10.12989/scs.2016.20.4.931.
  15. Chen, X., Chen, X. and Li, Z. (2019), "Ratcheting boundary of pressurized pipe under reversed bending", Steel Compos. Struct., 32(3), 312-323. https://doi.org/10.12989/scs.2019.32.3.312.
  16. Cuma, Y.C. and Calim, F.F. (2021), "Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area", Mech. Time-Depend. Mater., https://doi.org/10.1007/s11043-021-09520-1.
  17. Dong, Y., Li, X., Gao, K., Li, Y., and Yang, J. (2019), "Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment", Nonlinear Dyn., 99, 981-1000. https://doi.org/10.1007/s11071-019-05297-8.
  18. Fakhar, M.H., Fakhar, A. and Tabatabaei, H. (2019), "Analysis of critical fluid velocity and heat transfer in temperature-dependent nanocomposite pipes conveying nanofluid subjected to heat generation, conduction, convection and magnetic field", Steel Compos. Struct., 30(3), 281-292. https://doi.org/10.12989/scs.2019.30.3.281.
  19. Finot, M. and Suresh, S. (1996), "Small and large deformation of thick and thin-film multilayers: effect of layer geometry, plasticity and compositional gradients", J. Mech. Phys. Solids, 44(5), 683-721. https://doi.org/10.1016/0022-5096(96)84548-0.
  20. Hadji, L. and Bernard, F. (2020), "Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation", Adv. Mater. Res., 9(1), 63-98. https://doi.org/10.12989/amr.2020.9.1.063.
  21. Hadji, L., Daouadji, T.H., Tounsi, A. and Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Composite Struct., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507.
  22. Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293, https://doi.org/10.12989/anr.2021.10.3.281.
  23. Hellum, A.M., Mukherjee, R. and Hull, A.J. (2010), "Dynamics of pipes conveying fluid with turbulent and laminar velocity profiles", J. Fluids Struct., 26(5), 804-813. https://doi.org/10.1016/j.jfluidstructs.2010.05.001
  24. Ibrahim, R.A. (2010), "Overview of mechanics of pipes conveying fluids-Part I: fundamental studies", J. Pressure Vessel Technol., 132(3), 1-32. https://doi.org/10.1115/1.4001271
  25. Kamil Zur, K. and Jankowski, P. (2019), "Multiparametric analytical solution for the eigenvalue problem of FGM porous circular plates", Symmetry, 11(429), 1-24. https://doi.org/10.3390/sym11030429.
  26. Keleshteri, M.M. and Jelovica, J. (2021), "Nonlinear vibration analysis of bidirectional porous beams", Eng. Comput., http://doi.org/10.1007/s00366-021-01553-x.
  27. Khouddar, Y.E., Adri, A., Outassafte, O., El Hantati, I, Rifai, S. and Benamar, R. (2022), "Influence of hygro-thermal effects on the geometrically nonlinear free and forced vibrations of piezoelectric functional gradient beams with arbitrary number of concentrated masses", Arch. Appl. Mech., 92, 2767-2784. https://doi.org/10.1007/s00419-022-02219-w.
  28. Lai, B., Richard, J.Y. and Xiong, M. (2019), "Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete", Steel Compo. Struct., 33(1), 67-79. https://doi.org/10.12989/scs.2019.33.1.067.
  29. Langer, P., Jelich, C., Guist, C., Peplow, A. and Marburg, S. (2021), "Simplification of complex structural dynamic models: A case study related to a cantilever beam and a large mass attachment", Appl. Sci., 11(12), https://doi.org/10.3390/app11125428.
  30. Li, X., Zhou, X., Liu, J. and Wang, X. (2019), "Shear behavior of short square tubed steel reinforced concrete columns with high-strength concrete", Steel Compos. Struct., 32(3), 411-422. https://doi.org/10.12989/scs.2019.32.3.411.
  31. Liu, R. and Wang, L. (2015), "Thermal vibration of a single-walled carbon nanotube predicted by semiquantum molecular dynamics", Phys. Chemistry Chemical Phys., 7. https://doi.org/10.1039/C4CP05495D.
  32. Lopes, J.L., Paidoussis, M.P. and Semler, C. (2002), "Linear and nonlinear dynamics of cantilevered cylinders in axial flow-part II: the equations of motion", J. Fluids Struct., 16(6), 715-737. https://doi.org/10.1006/jfls.2002.0448
  33. Marin, M. (2010a), "Harmonic Vibrations in Thermoelasticity of Microstretch Materials", J. Vib. Acoust., Transact. ASME, 132(4), Art. No. 044501. https://doi.org/10.1115/1.4000971
  34. Marin, M., Agarwal, R.P. and Mahmoud, S.R., (2013), "Modeling a microstretch thermo-elastic body with two temperatures", Abstract Appl. Anal., 2013, Art. No 583464.
  35. Marin, M. (2010b), "A domain of influence theorem for microstretch elastic materials", Nonlinear Anal. Real World Appl., 11(5), 3446-3452. https://doi.org/10.1016/j.nonrwa.2009.12.005.
  36. Marin, M., Othman, M.I.A., Seadawy, A.R. and Carstea, C. (2020), "A domain of influence in the Moore-Gibson-Thompson theory of dipolar bodies", J. Taibah Univ. Sci., 14(1), 653-660, https://doi.org/10.1080/16583655.2020.1763664.
  37. Mechab, I., Meiche, N.E. and Bernard, F. (2016), "Free vibration analysis of higher-order shear elasticity nanocomposite beams with consideration of nonlocal elasticity and poisson Effect", J. Nanomech. Micromech., 6(3), 1-13. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000110.
  38. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  39. Nasrollahi, S., Maleki, S., Shariati, M., Marto, A. and Khorami, M. (2018), "Investigation of pipe shear connectors using push out test", Steel Compos. Struct., 27(5), 537-543. https://doi.org/10.12989/scs.2018.27.5.537.
  40. Nayfeh, A.H. and Mook, D.T. (2008), "Nonlinear oscillations", John Wiley & Sons.
  41. Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., 29(3), 363-377. https://doi.org/10.12989/scs.2018.29.3.363.
  42. Nguyen, X.H., Le, D.D. and Nguyen, Q.H. (2019), "Static behavior of novel RCS through-column-type joint: Experimental and numerical study", Steel and Composite Structures, An Int'l Journal, 32(1), 111-126. https://doi.org/10.12989/scs.2019.32.1.111.
  43. Noori, A.R., Aslan, T.A. and Temel, B. (2018), "An efficient approach for in-plane free and forced vibrations of axially functionally graded parabolic arches with nonuniform cross section", Compos. Struct., 200, 701-710. https://doi.org/10.1016/j.compstruct.2018.05.077.
  44. Noori, A.R., Aslan, T.A. and Temel, B. (2021), "Dynamic analysis of functionally graded porous beams using complementary functions method in the laplace domain", Compos. Struct., 256. https://doi.org/10.1016/j.compstruct.2020.113094.
  45. Ni, Q., Zhang, Z.L. and Wang, L. (2011), "Application of the differential transformation method to vibration analysis of pipes conveying fluid", Appl. Math. Comput., 217, 7028-7038.
  46. Paidoussis, M.P. (1998), "Fluid-structure interactions: slender structures and axial flow", 1, Elsevier Academic Press, London, UK.
  47. Paidoussis, M.P. and Li, G.L. (1993), "Pipes conveying fluid: a dynamical model problem", J. Fluids Struct., 7(2), 137-204. https://doi.org/10.1006/jfls.1993.1011
  48. Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.
  49. Qian, Q., Wang, Y., Zhu, F., Feng, C., Yang, J. and Shuguang Wang, S. (2022), "Primary nonlinear damped natural frequency of dielectric composite beam reinforced with graphene platelets (GPLs)", Archiv. Civ. Mech. Eng., 22(53), https://doi.org/10.1007/s43452-021-00369-2.
  50. Rafiee, R., Fakoor, M. and Hesamsadat, H. (2015), "The influence of production inconsistencies on the functional failure of GRP pipes", Steel Compos. Struct., 19(6), 1369-1379. https://doi.org/10.12989/scs.2015.19.6.1369.
  51. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472
  52. Rossikhin, Y.A. and Shitikova, M.V. (2012), "On fallacies in the decision between the Caputo and Riemann-Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator", Mech. Res. Commun., 45, 22-27. https://doi.org/10.1016/j.mechrescom.2012.07.001
  53. Rumeng, L. and Wang, Lifeng (2016), "Thermal vibration of a doublelayered graphene sheet with initial stress at low temperature", Chinese Science Bulletin, 62(4), 245-253. https://doi.org/10.1360/N972016-00927.
  54. Saffari, P.R., Fakhraie, M. and Roudbari, M.A. (2020), "Nonlinear vibration of fluid conveying cantilever nanotube resting on viscopasternak foundation using non-local strain gradient theory", Micro Nano Lett., 15(3), 183-188.
  55. Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. https://doi.org/10.12989/scs.2017.24.1.065.
  56. Shaw, S. (2001), "Perturbation techniques for nonlinear systems", Encyclopedia Vib., 1009-1011, https://doi.org/10.1006/rwvb.2001.0042.
  57. Shu, C. and Wang, C. (1999), "Treatment of mixed and nonuniform boundary conditions in GDQ vibration analysis of rectangular plates", Eng. Struct., 21(2), 125-134. https://doi.org/10.1016/S0141-0296(97)00155-7
  58. Song, Y., Uy, B. and Wang, J. (2019), "Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates ", Steel and Composite Structures, An Int'l Journal, 33(1), 143-162. https://doi.org/10.12989/scs.2019.33.1.143.
  59. Tahouneh, V., Naei, M.H., Mosavi Mashhadi, M. (2019), "Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory", Steel Compos. Struct., 33(5), 717-727. https://doi.org/10.12989/scs.2019.33.5.717.
  60. Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2020), "Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches", Steel Compos. Struct., 34(2), 261-277. https://doi.org/10.12989/scs.2020.34.2.261.
  61. Tang, Y., Yang, T. and Fang, B. (2018), "Fractional dynamics of fluidconveying pipes made of polymer-like materials", Acta Mech. Solida Sin., 31(2), 243-258. 2018. https://doi.org/10.1007/s10338-018-0007-9
  62. Toh, W., Tan, L.B., Tse, K.M., Raju, K., Lee, H.P. and Tan, V.B.C. (2018), "Numerical evaluation of buried composite and steel pipe structures under the effects of gravity", Steel Compos. Struct., 26(1), 55-66. https://doi.org/10.12989/scs.2018.26.1.055.
  63. Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2018), "Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures", Polymer Compos., https://doi.org/10.1002/pc.24520.
  64. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response", J. Sandw. Struct. Mater., 21(1), 320-365. https://doi.org/10.1177/1099636217693623.
  65. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2019), "Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis", Eng. Anal. Bound. Elem., 100, 24-47. https://doi.org/10.1016/j.enganabound.2017.07.029.
  66. Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong Formulation Finite Element Method Based on Differential Quadrature: A Survey", Appl. Mech. Rev., 67(2), 1-55. https://doi.org/10.1115/1.4028859.
  67. Wang, J. and Sun, Q. (2019), "Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading", Steel Compos. Struct., 32(2), 199-212. https://doi.org/10.12989/scs.2019.32.2.199.
  68. Wang, L. and Hu, H. (2014a), "Thermal vibration of single-walled carbon nanotubes with quantum effects", Proc. R. Soc. A., 470. http://dx.doi.org/10.1098/rspa.2014.0087.
  69. Wang, L. and Hu, H. (2014b), "Thermal vibration of a rectangular single-layered graphene sheet with quantum effects", J. Appl. Phys., 115(23), https://doi.org/10.1063/1.4885015.
  70. Wang, L. and Hu, H. (2015), "Thermal vibration of a circular singlelayered graphene sheet with simply supported or clamped boundary", J. Sound Vib., 349, 206-215. https://doi.org/10.1016/j.jsv.2015.03.045.
  71. Wang, Q. (2002), "On buckling of column structures with a pair of piezoelectric layers", Eng. Struct., 24, 199-205. https://doi.org/10.1016/S0141-0296(01)00088-8
  72. Wang, Y., Feng, C., Yang, J., Zhou, D. and Wang, S. (2021), "Nonlinear vibration of FG-GPLRC dielectric plate with active tuning using differential quadrature method", Comput. Methods Appl. Mech. Eng., 379, https://doi.org/10.1016/j.cma.2021.113761.
  73. Wang, Y., Zhou, Y., Feng, C., Yang, J., Zhou, D. and Wang, S. (2022), "Numerical analysis on stability of functionally graded graphene platelets (GPLs) reinforced dielectric composite plate", Appl. Math. Model., 101, 239-258, https://doi.org/10.1016/j.apm.2021.08.003.
  74. Wattanasakulpong, N. and Eiadtrong, S. (2022), "Transient responses of sandwich plates with a functionally graded porous core: Jacobi-Ritz Method", Int. J. Struct. Stab. Dyn., https://doi.org/10.1142/s0219455423500396.
  75. Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
  76. Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM", Steel Compos. Struct., 17(5), 753-776. https://doi.org/10.12989/scs.2014.17.5.753.
  77. Yu, C., Lu, J., Li, S., Xu, W. and Chiu, C. (2021), "Dynamics sensitivity analyses of Functionally Graded Porous (FGP) curved beams with variable curvatures and general boundary conditions", Int. J. Struct. Stab. Dyn., 21(11). https://doi.org/10.1142/S0219455421501510.
  78. Zahrai, S.M., Mirghaderi, S.R. and Saleh, A. (2017), "Increasing plastic hinge length using two pipes in a proposed web reduced beam section, an experimental and numerical study", Steel Compos. Struct., 23(4), 421-433. https://doi.org/10.12989/scs.2017.23.4.421.
  79. Zhang, Y. and Wang, Lifeng (2018), "Thermally stimulated nonlinear vibration of rectangular single-layered black phosphorus", J. Appl. Phys., 124(13), https://doi.org/10.1063/1.5047584.
  80. Zhang, L., Bhatti, M.M., Marin, M. and Mekheimer K. (2020), "Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic Zinc-Oxide (ZnO) nanoparticles", Entropy, 22(10), 1070. https://doi.org/10.3390/e22101070.
  81. Zhou, Z.G., Wu, L.Z. and Du, S.Y. (2006), "Non-local theory solution for a Mode I crack in piezoelectric materials", Eur. J. Mech. A/Solids, 25(5), 793-807. https://doi.org/10.1016/j.euromechsol.2005.10.003.
  82. Zhou, Z., Ni, Y., Tong, Z., Zhu, S., Sun, J. and Xu, X. (2019) "Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells", Int. J. Mech. Sci., 151, 537-550. https://doi.org/10.1016/j.ijmecsci.2018.12.012.