참고문헌
- Abdollahi, M., Saidi, A.R. and Bahaadini, R. (2021), "Aeroelastic analysis of symmetric and non-symmetric trapezoidal honeycomb sandwich plates with FG porous face sheets", Aerosp. Sci. Technol., 119, 107211. https://doi.org/10.1016/j.ast.2021.107211.
- Abo-bakr, R.M., Shanab, R.A. and Attia, M.A. (2021), "Multiobjective optimization for lightweight design of bi-directional functionally graded beams for maximum frequency and buckling load", Compos. Struct., 278, 114691. https://doi.org/10.1016/j.compstruct.2021.114691.
- Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. https://doi.org/10.1177/1077546320947302.
- Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2020), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01070-3.
- Al-Furjan, M.S.H., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2021a), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.
- Al-Furjan, M.S.H., Habibi, M., Shan, L. and Tounsi, A. (2021b), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
- Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01088-7.
- Al-Osta, M.A., Saidi, H., Tounsi, A., Al-Dulaijan, S.U., AlZahrani, M.M., Sharif, A. and Tounsi, A. (2021), "Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model", Smart Struct. Syst., 28(4), 499-513. https://doi.org/10.12989/sss.2021.28.4.499.
- Alghanmi, R.A. and Zenkour, A.M. (2021), "An electromechanical model for functionally graded porous plates attached to piezoelectric layer based on hyperbolic shear and normal deformation theory", Compos. Struct., 274, 114352. https://doi.org/10.1016/j.compstruct.2021.114352.
- Alhaifi, K., Arshid, E. and Khorshidvand, A.R. (2021), "Large deflection analysis of functionally graded saturated porous rectangular plates on nonlinear elastic foundation via GDQM", Steel Compos. Struct., 39(6), 795-809. https://doi.org/10.12989/scs.2021.39.6.795.
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
- Anamagh, M.R. and Bediz, B. (2020), "Free vibration and buckling behavior of functionally graded porous plates reinforced by graphene platelets using spectral Chebyshev approach", Compos. Struct., 253, 112765. https://doi.org/10.1016/j.compstruct.2020.112765.
- Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2021), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01382-y.
- Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Behavior of a viscoelastic composite plates under transient load", J. Mech. Sci. Technol., 25(5), 1129-1140. https://doi.org/10.1007/s12206-011-0302-6.
- Attia, M.A., El-Shafei, A.G. and Gad, S.I. (2021), "Investigation of indentation response of bi-directional functionally graded materials", Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 235(8), 1641-1658. https://doi.org/10.1177/1350650120971078.
- Barati, M.R. and Shahverdi, H. (2017), "Aero-hygro-thermal stability analysis of higher-order refined supersonic FGM panels with even and uneven porosity distributions", J. Fluids Struct, 73, 125-136. https://doi.org/10.1016/j.jfluidstructs.2017.06.007.
- Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Al-Zahrani, M.M. (2020), "Porositydependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concrete, Int. J., 26(5), 439-450. https://doi.org/10.12989/cac.2020.26.5.439
- Bellman, R., Kashef, B.G. and Casti, J. (1972), "Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys., 10(1), 40-52. https://doi.org/10.1016/0021-9991(72)90089-7
- Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46(1), 194-203. https://doi.org/10.2514/1.32490.
- Chanda, A. and Bora, S.N. (2020), "Effect of a porous sea-bed on water wave scattering by two thin vertical submerged porous plates", Europ. J. Mech. B/Fluids, 84, 250-261. https://doi.org/10.1016/j.euromechflu.2020.06.009.
- Chen, X., Chen, L., Huang, S., Li, M. and Li, X. (2021), "Nonlinear forced vibration of in-plane bi-directional functionally graded materials rectangular plate with global and localized geometrical imperfections", Appl. Math. Model., 93, 443-466. https://doi.org/10.1016/j.apm.2020.12.033.
- Cho, I.H. (2021), "Wave energy dissipation by a floating horizontal porous plate in oblique incident waves", Wave Motion, 102765. https://doi.org/10.1016/j.wavemoti.2021.102765.
- Coskun, S., Kim, J. and Toutanji, H. (2019), "Bending, free vibration, and buckling analysis of functionally graded porous micro-plates using a general third-order plate theory", J. Compos. Sci., 3(1), 15. https://doi.org/10.3390/jcs3010015.
- Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021c), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
- Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2021b), "Analysis of axially temperaturedependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01413-8.
- Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Mohamed, S.A. and Eltaher, M.A. (2021a), "Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory", Defence Technol., https://doi.org/10.1016/j.dt.2021.09.011.
- Dhuria, M., Grover, N. and Goyal, K. (2021), "Influence of porosity distribution on static and buckling responses of porous functionally graded plates", Structures, 34, 1458-1474. https://doi.org/10.1016/j.istruc.2021.08.050.
- Do, D.T., Nguyen-Xuan, H. and Lee, J. (2020), "Material optimization of tri-directional functionally graded plates by using deep neural network and isogeometric multimesh design approach", Appl. Math. Model., 87, 501-533. https://doi.org/10.1016/j.apm.2020.06.002.
- El-Ashmawy, A.M., Xu, Y. and El-Mahdy, L.A. (2021), "Mechanical properties improvement of bi-directional functionally graded laminated MWCNT reinforced composite beams using an integrated tailoring-optimization approach", Microporous Mesoporous Mater., 314, 110875. https://doi.org/10.1016/j.micromeso.2021.110875.
- Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 1-10. https://doi.org/10.1007/s40430-018-1065-0.
- Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct. Machines, 1-25. https://doi.org/10.1080/15397734.2021.1904255.
- Esmaeilzadeh, M. and Kadkhodayan, M. (2019), "Dynamic analysis of stiffened bi-directional functionally graded plates with porosities under a moving load by dynamic relaxation method with kinetic damping", Aerosp. Sci. Technol., 93, 105333. https://doi.org/10.1016/j.ast.2019.105333.
- Farsani, S.R., Jafari-Talookolaei, R.A., Valvo, P.S. and Goudarzi, A.M. (2021), "Free vibration analysis of functionally graded porous plates in contact with bounded fluid", Ocean Eng., 219, 108285. https://doi.org/10.1016/j.oceaneng.2020.108285.
- Gao, Z., Li, H., Zhao, J., Guan, J. and Wang, Q. (2021), "Analyses of dynamic characteristics of functionally graded porous (FGP) sandwich plates with viscoelastic materials-filled square-celled core", Eng. Struct., 248, 113242. https://doi.org/10.1016/j.engstruct.2021.113242.
- Ghandourah, E.E., Ahmed, H.M., Eltaher, M.A., Attia, M.A. and Abdraboh, A.M. (2021), "Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model", Adv. Nano Res., 11(4), 405-422. https://doi.org/10.12989/anr.2021.11.4.405.
- Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. https://doi.org/10.12989/scs.2021.38.1.001.
- Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/10.12989/scs.2021.39.1.051.
- Hamed, M.A., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
- Javed, S. and Al Mukahal, F.H.H. (2021), "Free vibration of annular circular plates based on higher-order shear deformation theory: A spline approximation technique", Int. J. Aerosp. Eng., 2021. https://doi.org/10.1155/2021/5440376.
- Jha, D.K., Kant, T. and Singh, R.K. (2013), "Free vibration response of functionally graded thick plates with shear and normal deformations effects", Compos. Struct., 96, 799-823. http://dx.doi.org/10.1016/j.compstruct.2012.09.034.
- Joshi, K.K. and Kar, V.R. (2020), "Bending analysis of bidimensional functionally graded plate using FEA", Mater. Today: Proceedings, 26, 1766-1770. https://doi.org/10.1016/j.matpr.2020.02.37.
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
- Karamanli, A. (2021), "Size-dependent behaviors of three directional functionally graded shear and normal deformable imperfect microplates", Compos. Struct., 257, 113076. https://doi.org/10.1016/j.compstruct.2020.113076.
- Karamanli, A. and Aydogdu, M. (2019), "Size dependent flapwise vibration analysis of rotating two-directional functionally graded sandwich porous microbeams based on a transverse shear and normal deformation theory", Int. J. Mech. Sci., 159, 165-181. https://doi.org/10.1016/j.ijmecsci.2019.05.047.
- Karamanli, A. and Aydogdu, M. (2020), "Vibration of functionally graded shear and normal deformable porous microplates via finite element method", Compos Struct., 237, 111934. https://doi.org/10.1016/j.compstruct.2020.111934.
- Karamanli, A. and Vo, T.P. (2021), "Bending, vibration, buckling analysis of bi-directional FG porous microbeams with a variable material length scale parameter", Appl. Math. Model., 91, 723-748. https://doi.org/10.1016/j.apm.2020.09.058.
- Karamanli, A., Aydogdu, M. and Vo, T.P. (2021), "A comprehensive study on the size-dependent analysis of strain gradient multi-directional functionally graded microplates via finite element model", Aerosp. Sci. Technol., 111, 106550. https://doi.org/10.1016/j.ast.2021.106550.
- Li, M., Soares, C.G. and Yan, R. (2020), "A novel shear deformation theory for static analysis of functionally graded plates", Compos. Struct., 250, 112559. https://doi.org/10.1016/j.compstruct.2020.112559.
- Li, M., Soares, C.G. and Yan, R. (2021a), "Free vibration analysis of FGM plates on Winkler/Pasternak/Kerr foundation by using a simple quasi-3D HSDT", Compos. Struct., 264, 113643. https://doi.org/10.1016/j.compstruct.2021.113643.
- Li, M., Yan, R., Xu, L. and Soares, C.G. (2021), "A general framework of higher-order shear deformation theories with a novel unified plate model for composite laminated and FGM plates", Compos. Struct., 261, 113560. https://doi.org/10.1016/j.compstruct.2021.113560.
- Li, M., Yan, R., Xu, L. and Soares, C.G. (2021b), "A general framework of higher-order shear deformation theories with a novel unified plate model for composite laminated and FGM plates", Compos. Struct., 261, 113560. https://doi.org/10.1016/j.compstruct.2021.113560.
- Lieu, Q.X., Lee, S., Kang, J. and Lee, J. (2018), "Bending and free vibration analyses of in-plane bi-directional functionally graded plates with variable thickness using isogeometric analysis", Compos. Struct., 192, 434-451. https://doi.org/10.1016/j.compstruct.2018.03.021.
- Liu, B., Ma, Z., Li, J., Xie, H., Wei, X., Wang, B. and Zhao, D. (2022), "Experimental study of a 3D printed permanent implantable porous Ta-coated bone plate for fracture fixation", Bioactive Mater., 10, 269-280. https://doi.org/10.1016/j.bioactmat.2021.09.009.
- Mahapatra, T.R., Kar, V.R., Panda, S.K. and Mehar, K. (2017), "Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading", J. Thermal Stresses, 40(9), 1184-1199. https://doi.org/10.1080/01495739.2017.1302788.
- Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016), "Nonlinear flexural analysis of laminated composite panel under hygrothermo-mechanical loading-a micromechanical approach", Int. J. Comput. Meth., 13(03), 1650015. https://doi.org/10.1142/S0219876216500158.
- Mantari, J.L. and Soares, C.G. (2013), "A novel higher-order shear deformation theory with stretching effect for functionally graded plates", Compos. Part B: Eng., 45(1), 268-281. http://dx.doi.org/10.1016/j.compositesb.2012.05.036.
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94(2), 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007.
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94(2), 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007.
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Europ. J. Mech. A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
- Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017b), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Thermal Stresses, 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689.
- Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H. and Eltaher, M.A. (2022), "Free vibration of FG-CNTRCs nano-plates/shells with temperature-dependent properties", Mathematics, 10(4), 583. https://doi.org/10.3390/math10040583.
- Melaibari, A., Daikh, A.A., Basha, M., Wagih, A., Othman, R., Almitani, K.H. and Eltaher, M.A. (2022), "A dynamic analysis of randomly oriented functionally graded carbon nanotubes/fiber-reinforced composite laminated shells with different geometries", Mathematics, 10(3), 408. https://doi.org/10.3390/math10030408.
- Melaibari, A., Khoshaim, A.B., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability and of symmetric and sigmoid functionally graded beam under variable axial load", Steel Compos. Struct., 35(5), 671-685. https://doi.org/10.12989/scs.2020.35.5.671.
- Mohamed, S.A. (2020), "A fractional differential quadrature method for fractional differential equations and fractional eigenvalue problems", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.6753.
- Mohamed, S.A., Mohamed, N.A. and Abo-Hashem, S.I. (2021), "A novel differential-integral quadrature method for the solution of nonlinear integro-differential equations", Math. Meth. Appl. Sci., 44(18), 13945-13967. https://doi.org/10.1002/mma.7667.
- Neves, A.M.A., Ferreira, A.J., Carrera, E., Cinefra, M., Jorge, R. M.N. and Soares, C.M.M. (2012a), "Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects", Adv. Eng. Softw., 52, 30-43. http://dx.doi.org/10.1016/j.advengsoft.2012.05.005.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2012b), "A quasi3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94(5), 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005
- Noor, A.K. (1973), "Free vibrations of multilayered composite plates", AIAA J., 11(7), 1038-1039. https://doi.org/10.2514/3.6868.
- Ohab-Yazdi, S.M.K. and Kadkhodayan, M. (2021), "Free vibration of bi-directional functionally graded imperfect nanobeams under rotational velocity", Aerosp. Sci. Technol., 119, 107210. https://doi.org/10.1016/j.ast.2021.107210.
- Pagano, N.J. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34. https://doi.org/10.1177/002199837000400102.
- Qiao, D., Yan, J., Feng, C., Liang, H., Ning, D., Li, B. and Johanning, L. (2021), "Numerical analysis on wave load reduction effect of a solid wall with porous plate by macroscopic CFD approach", Ocean Eng., 237, 109624. https://doi.org/10.1016/j.oceaneng.2021.109624.
- Quan, T.Q. and Duc, N.D. (2022), "Analytical solutions for nonlinear vibration of porous functionally graded sandwich plate subjected to blast loading", Thin-Wall. Struct., 170, 108606. https://doi.org/10.1016/j.tws.2021.108606.
- Rad, A.B. (2018), "Static analysis of non-uniform 2D functionally graded auxetic-porous circular plates interacting with the gradient elastic foundations involving friction force", Aerosp. Sci. Technol., 76, 315-339. https://doi.org/10.1016/j.ast.2018.01.036.
- Reddy, J. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Shanab, R.A. and Attia, M.A. (2020), "Semi-analytical solutions for static and dynamic responses of bi-directional functionally graded nonuniform nanobeams with surface energy effect", Eng. Comput., 1-44. https://doi.org/10.1007/s00366-020-01205-6.
- Shen, Z., Xia, J. and Cheng, P. (2019), "Geometrically nonlinear dynamic analysis of FG-CNTRC plates subjected to blast loads using the weak form quadrature element method", Compos. Struct., 209, 775-788. https://doi.org/10.1016/j.compstruct.2018.11.009.
- Shu, C. (2012), Differential Quadrature and Its Application in Engineering. Springer Science & Business Media.
- Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of doubleFGM nanoplates via a quasi-3D refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.
- Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S. U. and Al-Zahrani, M.M. (2021a), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
- Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Dulaijan, S. U. and Al-Zahrani, M.M. (2021b), "An integral four-variable hyperbolic HSDT for the wave propagation investigation of a ceramic-metal FGM plate with various porosity distributions resting on a viscoelastic foundation", Waves Random Complex Media, 1-24. https://doi.org/10.1080/17455030.2021.1942310.
- Tahouneh, V. and Naei, M.H. (2014), "A novel 2-D six-parameter power-law distribution for three-dimensional dynamic analysis of thick multi-directional functionally graded rectangular plates resting on a two-parameter elastic foundation", Meccanica, 49(1), 91-109. https://doi.org/10.1007/s11012-013-9776-x.
- Taibi, F.Z., Benyoucef, S., Tounsi, A., Bachir Bouiadjra, R., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 17(2), 99-129. https://doi.org/10.1177/1099636214554904.
- Thai, H.T. and Choi, D.H. (2013), "Finite element formulation of various four unknown shear deformation theories for functionally graded plates", Finite Elements Anal. Des., 75, 50-61. http://dx.doi.org/10.1016/j.finel.2013.07.003.
- Thai, H.T. and Kim, S.E. (2012), "Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates", Int. J. Mech. Sci., 54(1), 269-276. https://doi.org/10.1016/j.ijmecsci.2011.11.007.
- Touratier, M. (1991), "An efficient standard plate theory", Int.l J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
- Tran, L.V., Lee, J., Nguyen-Van, H., Nguyen-Xuan, H. and Wahab, M.A. (2015), "Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory", Int. J. Non-Linear Mech., 72, 42-52. http://dx.doi.org/10.1016/j.ijnonlinmec.2015.02.007.
- Wu, C.P. and Chiu, K.H. (2011), "RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates", Compos. Struct., 93(5), 1433-1448. https://doi.org/10.1016/j.compstruct.2010.11.015.
- Wu, C.P. and Yu, L.T. (2018), "Quasi-3D static analysis of twodirectional functionally graded circular plates", Steel Compos. Struct., 27(6), 789-801. https://doi.org/10.12989/scs.2018.27.6.789.
- Yu, T., Yin, S., Bui, T.Q., Xia, S., Tanaka, S. and Hirose, S. (2016), "NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method", Thin-Wall. Struct., 101, 141-156. http://dx.doi.org/10.1016/j.tws.2015.12.008.
- Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
- Zong, Z. (2009), Advanced Differential Quadrature Methods. Chapman and Hall/CRC.