DOI QR코드

DOI QR Code

A Study on Bilge Pumping Performance of 24,000TEU class Container Ship

24,000TEU급 컨테이너선박의 빌지 펌핑 성능에 대한 고찰

  • Seo, Jang-Won (Korea institute of Geoscience and mineral resources,) ;
  • Yun, Jeong-In (Korea Marine Equipment Research Institute) ;
  • Lee, Kyoung-Woo (Team Solution Co., Ltd.) ;
  • Lee, Won-Ju (Division of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Park, Hoyong (Korea research institute of ship & ocean engineering Advanced Ship Research Division) ;
  • Choe, Su-Jeong (Graduate school of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Choi, Jae-Hyuk (Division of Marine System Engineering, Korea Maritime and Ocean University)
  • Received : 2022.09.29
  • Accepted : 2022.10.28
  • Published : 2022.10.31

Abstract

Herein, a case study was conducted on the bilge pumping performance of a 24,000TEU class container ship with an overall length of 400m. Although the bilge system of the 24,000TEU class container ship was designed in accordance with the rule requirements of the Classification Society, the bilge system did not satisfy the 2 m/s requirements of SOLAS Reg.II-1/35-1 under the rated flow rate and maximum flow rate conditions of the bilge pump installed in the ship. In particular, assumptions were made that No.1 ~ No.4 cargo holds were flooded and filled entirely by sea water and the evaluation of bilge pumping performance had been performed for No.1 ~ No.4 cargo holds. According to the evaulation results of the, the mean water velocity at the main bilge pipe for No.2, No.3, and No.4 cargo holds did not meet the 2 m/s criterion. To resolve this problem, in this study, the branch bilge pipe in each cargo hold was changed from 150A to 200A and the mean water velocity at the main bilge pipe for No.2, No.3, and No.4 was calculated as 2.479m/s, 2.476m/s, and 2.459m/s, respectively.

본 연구에서는 전장이 400m인 24,000TEU급 컨테이너선박을 대상으로 선박 내 빌지펌핑의 성능에 대한 케이스 스터디를 수행하였다. 본 연구의 대상인 24,000TEU급 컨테이너선박의 빌지시스템의 경우 선급의 규칙에 맞게 설계되었지만, 선박 내 설치되어 있는 빌지펌프의 정격유량 및 최대유량 조건에서도 SOLAS Reg.II-1/35-1의 2 m/s 요건을 만족시키지 못하였다. 특히 1번 ~ 4번 화물창에 대해, 해수로 가득차 있다고 가정한 상태에서 해수를 모두 배출하는 동안에 빌지 주관에서의 평균유속을 계산할 결과, 2번 화물창, 3번 화물창 및 4번 화물창은 평균유속이 2 m/s 미만으로 기준에 적합하지 않은 것으로 나타났다. 본 연구에서는 이를 해결하기 위해 2번, 3번 및 4번 화물창의 150A 빌지 지관을 200A 배관으로 교체하여 계산을 수행하였으며, 그 결과 화물창 내의 해수를 모두 배출하는 동안의 빌지 주관에서의 해수평균유속이 각각 2.479m/s, 2.476,m/s 및 2.459m/s 로 기준을 만족시키는 것을 알 수 있었다.

Keywords

References

  1. BSI(British Standards Institution)(2000), BS EN ISO 9906:2000, Rotodynamic pumps - Hydraulic performance acceptance tests-Grades 1 and 2, ISO, ISBN: 0580344215.
  2. Casey, T. J.(1992), Water and Wastewater Engineering Hydraulics, Oxford (UK): Oxford University Press., ISBN: 0198563590.
  3. Perez, D. M., L. C. Ramos-Arzola, and A. Q. Torres(2020), Pressure-Dependent Models in Ship Piping Systems, Journal of Marine Science and Application, Vol. 19, pp. 266-274. https://doi.org/10.1007/s11804-020-00146-2
  4. Fried, E. and I. E. Idelchik(1989), Flow Resistance: a design guide for engineers, Taylor & Francis, ISBN: 0891164359.
  5. IMO(International Maritime Organization)(2003), Interpretations of MSC/Circ.913 - Hydraulic calculation standard, FP 48/5/2,IMO.
  6. ITTC(International Towing Tank Conference)(2011), Fresh water and sea water properties (Rev. 2), https://www.ittc.info/media/7989/75-02-01-03.pdf (Accessed 21 st Sep. 2022).
  7. Gilley, J. E., E. R. Kottwitz, and G. A. Wieman(1992), Darcy-Weisbach Roughness coefficient for Gravel and Cobble Surfaces, Journal of Irrigation and Drainage Engineering, Vol. 118, pp. 104-112. https://doi.org/10.1061/(ASCE)0733-9437(1992)118:1(104)
  8. Lee, K. W., G. Y. Han, and M. E. Kim(2021), Proposed Design Criteria for a Bilge Pumping System for Large Container Ship, International Journal of Maritime Engineering, Vol. 163, Part A2, p. A-71-A-79.
  9. Pawara, M. U., W. Setiawan, R. J. Ikhwani, Alamsyah, A. I. Wulandari, Suardi, A. M. Nugraha A, T. Hidayat, M. I. Ansori, and F. Mahmuddin(2021), Bilge System Design on 500 GT Ferry for Bulukumba-Selayar Route, IOP Conference Series: Earth and Environmental Science, Vol. 921.
  10. Diskin, M. H.(1960), The Limits of Applicability of the Hazen-Williams Formula, La Houille Blanche, Vol. 46, pp. 720-726. https://doi.org/10.1051/lhb/1960059
  11. Miller, D. S.(1990), Internal Flow Systems: Design and Performance Prediction, Gulf Publishing Company, ISBN: 0872010201.
  12. NFPA(2013), NFPA 13 Standard for the Installation of Sprinkler Systems 2013 Edition, NFPA, ISBN: 978-1455905 54-4 (Redline PDF).
  13. Stephenson, D.(1984), Pipeflow Analysis, Elsevier, ISBN: 0444422838.
  14. Tan, Wei Chian, I-Ming Chen, Dimitrios Pantazis, and Sinno Jialin Pan(2018), Transfer Learning with PipNet: For Automated Visual Analysis of Piping Design, 2018 IEEE 14th International Conference on Automation Science and Engineering, pp. 1296-1301.
  15. Jiang, Wen-Ying, Yan Lin, Ming Chen, and Yan-Yun Yu(2015), A co-evolutionary improved multi-ant colony optimization for ship multiple and branch pipe route design, Ocean Engineering, Vol. 102, pp. 63-70. https://doi.org/10.1016/j.oceaneng.2015.04.028
  16. Bian, Xuanyi, Yan Lin, and Zongran Dong(2022), Auto-routing Methods for Complex Ship Pipe Route Design, Journal of Ship Production and Design, pp. 1-15.